Professor of Applied Mathematics at the Université Bourgogne Europe
Director of the Bourgogne Franche-Comté Mathematics Federation
Member of the Statistics, Probability, Control and Optimization team (SPOC)
Research
Main topic: My research framework concerns the analysis of stochastic dfferential equations.
1. Asymptotic analysis related to the study of certain stochastic processes.
This research area includes the study of large deviation phenomena for nonlinear stochastic processes such as self-attracting diffusions (driven by their own law), the analysis of diffusions perturbed by a periodic signal (highlighting stochastic resonance), long-time behavior of long-memory diffusions, and the study of chaos propagation in large interacting particle systems (solutions of stochastic differential equations). These studies are connected to problems arising from climate science, biology, and financial modeling.
2. Stochastic algorithms (simulation of passage time or exit time for diffusion processes).
Overview
PhD in 2001 (University of Nancy 1, under Bernard Roynette): Study of diffusion processes.
HDR in 2009: Asymptotic analysis related to certain stochastic processes
Academic positions :
2011 - present: University of Burgundy (Dijon, France), professor
2002 - 2011: Université de Lorraine (Ecole des Mines de Nancy), assistant professor
2008 - 2009: On leave at INRIA (Nancy, France)
2001 - 2002: Postdoctoral position (DFG fellowship) at the Technical university of
Berlin, Germany.
Published articles
A singular large deviations phenomenon (avec M. Gradinaru et B. Roynette) document postscript
Annales de l’Institut Henri Poincaré 37 (2001) no.5, pp 555—580
Phénomène de Peano et Grandes Déviationspdf
Comptes Rendus de l’Académie des Sciences 332 (2001) no.11
Barrier crossings characterize stochastic resonance (avec P. Imkeller) pdf
Stochastics and Dynamics 2, no.3 (2002), pp 413-436
Boundedness and convergence of some self-attracting diffusions (avec B. Roynette) pdf
Mathematische Annalen 325, no.1 (2003), pp 81-96
Système de processus auto-stabilisantspdf
Dissertationes Mathematicae 414 (2003) 49 pages.
Rate of convergence of some self-attracting diffusions (avec M. Scheutzow) pdf
Stochastic Processes and their Applications 111, no.1 (2004), pp 41-55.
The exit problem for diffusions with time-periodic drift and stochastic resonance. (avec P. Imkeller) pdf
Annals of Applied Probability 15, no. 1A, (2005), pp 39—68
Transition times and stochastic resonance for multidimensional diffusions with time periodic drift : a large deviations approach. (avec P. Imkeller et D. Peithmann). pdf
Annals of Applied Probability 16, no. 4 (2006), pp 1851—1892
Large deviations and a Kramers’ type law for self-stabilizing diffusions (avec P. Imkeller et D. Peithmann). pdf
Annals of Applied Probability 18, no. 4 (2008), pp 1379—1423
Non uniqueness of stationary measures for self-stabilizing diffusions (avec J. Tugaut) pdf
Stochastic Processes & Their Applications 120, no. 7 (2010), pp. 1215-1246
From persistant random walk to the telegrapg noise (avec P. Vallois) pdf
Stochastics and Dynamics 10, no. 2 (2010), pp. 161—196
Stationary measures for self-stabilizing diffusions : asymptotic analysis in the small noise limit (avec J. Tugaut) pdf
Elect. Journ. Probab. 15 (2010), pp. 2087-2116.
Self-stabilizing processes : uniqueness problem for stationary measures and convergence rate in the small noise limit (avec J. Tugaut) pdf
ESAIM P&S 16 (2012), pp. 277-305.
Hitting time for Bessel processes - Walk on moving spheres algorithm (WOMS) (avec M. Deaconu) pdf
Ann. Appl. Probab. 23 (2013), no. 6, 2259–2289.
Persistent random walks, variable length Markov chains and piecewise deterministic Markov processes avec P. Cénac, B. Chauvin et P. Vallois pdf
Markov Process. Related Fields 19 (2013), no. 1, 1–50.
Statistics of transitions for Markov chains with periodic forcing (with D. Landon) pdf
Stoch. Dyn. 15 (2015), no. 4, 30 pp.
The first-passage time of the Brownian motion to a curved boundary: an algorithmic approach (with E. Tanré) pdf
SIAM Journal on Scientific Computing, 38 (2016), no. 1, A196–A215.
Mean-field limit versus small-noise limit for some
interacting particle systems (with J. Tugaut) pdf
Communications on Stochastic Analysis, Vol. 10, No. 1 (2016) 39-55
The walk on moving spheres: A new tool for simulating Brownian motion's exit time from a domain (with M. Deaconu and S. Maire) pdf
Mathematics and Computers in Simulation, Vol. 135 (2017), pp. 28--38.
Simulation of hitting times for Bessel processes with non integer dimension (with M. Deaconu) pdf
Bernoulli, Vol. 23, no.4B (2017) pp.3744-3771.
Initial-Boundary Value Problem for the heat equation - A stochastic algorithm (with M. Deaconu) pdf
Ann. Appl. Probab. 28 (2018), no. 3, 1943–1976.
Exact simulation of the first-passage time of
diffusions (with C. Zucca) pdf J. Sci. Comput. 79 (2019), no. 3, 1477–1504.
Exact simulation of first exit times for one-dimensional
diffusion processes (with C. Zucca) pdf
ESAIM Math. Model. Numer. Anal 54 (2020), no.3, 811--844
Exit problem for Ornstein-Uhlenbeck processes:
a random walk approach. (with N. Massin) pdf Discrete Contin. Dyn. Syst. Ser. B 25 (2020), no. 8, 3199–3215
Approximation of exit times for one-dimensional linear diffusion processes (with N. Massin) pdf Comput. Math. Appl. 80 (2020), no. 6, 1668--1682
Exact simulation of diffusion first exit times: algorithm
acceleration (with C. Zucca)
J. Mach. Learn. Res. 23 (2022), 1--19
Strong approximation of Bessel processes (with M. Deaconu) pdf Methodol. Comput. Appl. Probab. 25 (2023), no.1, Paper No. 11, 24 pp.
Exact simulation of the first passage time through a given level for jump diffusions (with N. Massin) pdf Math. Comput. Simulation 203 (2023), 55--576.
Strong approximation of particular one-dimensional diffusions (with M. Deaconu) pdf
Discrete Contin. Dyn. Syst. Ser. B 29 (2024), no. 4, pp. 1990-2017.
Other research articles
Stochastic resonance : non-robust and robust tuning notions (avec P. Imkeller et I. Pavlyukevich) pdf
Probabilistic Problems in Atmospheric and Water Sciences Banach Center Publ.
Two Mathematical Approaches to Stochastic Resonance (avec P. Imkeller et I. Pavlyukevich) pdf
Closing volume of the German national research program on interacting stochastic systems of high complexity Springer.
Stochastic Resonance (avec P. Imkeller) pdf
Encyclopedia of Mathematical Physics, eds. J.-P. Françoise, G.L. Naber and Tsou S.T. Oxford : Elsevier, 2006.
Book
Stochastic Resonance: A Mathematical Approach in the Small Noise Limit (avec D. Peithmann, P. Imkeller, I. Pavlyukevich) page dédiée
AMS, 2014, 189 pp., Hardcover, ISBN-10: 1-4704-1049-4, ISBN-13: 978-1-4704-1049-0
Dissertations
Mémoire de doctorat (juin 2001) Etude de processus de diffusiondocument pdf
Mémoire d’habilitation (novembre 2009) Calcul asymptotique lié à l’étude de certains processus stochastiquesdocument pdf
Teaching (2024–2025)
Algorithmes stochastiques (Master MIGS & PMG)
TD probabilités (Master MIGS & PMG)
TD statistique (L2 Psychologie)
Simulation of stochastic processes (Master in Turin)
Simulation of stochastic processes (Master in Turin)
Chapter 1: Simulation of random variables
1. Random number generators
2. Classical discrete random variables
3. Continuous random variables (reciprocal function and acceptance/rejection methods)
1. Properties and definition
2. Simulation of 1-dimensional binomial
- As a Gaussian processes
- Using Lévy's argument (Brownian bridge)
- Karhunen-Loève theorem
3. Simulation of a d-dimensional Brownian motion, a Q-Brownian motion