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tWe investigate exit times from domains of attra
tion for the motion of a self-stabilized parti
letravelling in a geometri
 (potential type) lands
ape and perturbed by Brownian noise of small am-plitude. Self-stabilization is the e�e
t of in
luding an ensemble-average attra
tion in addition to theusual state dependent drift, where the parti
le is supposed to be suspended in a large population ofidenti
al ones. A Kramers' type law for the parti
le's exit from the potential's domains of attra
tionand a large deviations prin
iple for the self-stabilizing di�usion are proved. It turns out that the exitlaw for the self-stabilizing di�usion 
oin
ides with the exit law of a potential di�usion without self-stabilization and a drift 
omponent perturbed by average attra
tion. We show that self-stabilizationmay substantially delay the exit from domains of attra
tion, and that the exit lo
ation may be
ompletely di�erent.2000 AMS subje
t 
lassi�
ations: primary 60 F 10, 60 H 10; se
ondary 60 K 35, 37 H 10, 82 C 22.Key words and phrases: self-stabilization; di�usion; exit time; exit law; large deviations; intera
tingparti
le systems; domain of attra
tion; propagation of 
haos.1 Introdu
tionWe examine the motion of a parti
le subje
t to three sour
es of for
ing. Firstly, it wanders in a lands
apewhose geometry is determined by a potential. Se
ondly, its traje
tories are perturbed by Brownian noiseof a small amplitude. The third sour
e of for
ing 
an be thought of as self-stabilization. Roughly, it
hara
terizes the in�uen
e of a large population of identi
al parti
les subje
t to the same laws of motion.They a
t on the individual through an attra
tive potential averaged over the whole population, whi
hadds to the underlying potential drift. More formally, denote by Xε

t the random position of the parti
leat time t. It is governed by the d-dimensional SDE
dXε

t = V (Xε
t ) dt−

∫

IRd

Φ(Xε
t − x) duε

t (x) dt+
√
εdWt. (1.1)In this equation, V denotes a ve
tor �eld on IRd, whi
h we think of as representing a potential gradient,the �rst sour
e of for
ing. Without the other two sour
es the motion of the parti
le would just amountto the dynami
al system given by the ODE

ẋ = V (x). (1.2)1



The small sto
hasti
 perturbation by Brownian noise W of intensity ε a

ounts for the se
ond sour
eof for
ing. It is responsible for random behavior of Xε, and allows for transitions between otherwiseenergeti
ally unrea
hable domains of attra
tion. The third for
ing involving the pro
ess' own law uε
tintrodu
es a feature that we 
all self-stabilization. The distan
e between the parti
le's instantaneousposition Xε

t and a �xed point x in state spa
e is weighed by means of a so-
alled intera
tion fun
tion Φand integrated in x against the law of Xε
t itself. This e�e
tive additional drift 
an be seen as a measurefor the average attra
tive for
e exerted on the parti
le by an independent 
opy of itself through theattra
tion potential Φ. In e�e
t, this for
ing makes the di�usion inertial and stabilizes its motion in
ertain regions of the state spa
e.Equations of the type (1.1) are obtained as meso-s
opi
 limits of mi
ro-systems of intera
ting parti
les,as the number of parti
les in an ensemble of identi
al ones tends to in�nity, and subje
t to the same�rst two sour
es of for
ing, i.e. the for
e �eld V and the Brownian noise of intensity ε. Suppose we aregiven an intera
tion fun
tion Φ, i.e. for any two parti
les lo
ated at x and y in state spa
e the value

Φ(x−y) expresses the for
e of mutual attra
tion. This attra
tion 
an for instan
e be thought of as beinggenerated by ele
tromagneti
 e�e
ts. The dynami
s of a parti
le system 
onsisting of N su
h parti
lesis des
ribed by the sto
hasti
 di�erential equation
dX i,N

t = V (X i,N
t ) dt− 1

N

N∑

j=1

Φ(X i,N
t −Xj,N

t ) dt+
√
ε dW i

t , i = 1, . . . , N,

X i,N
0 = xi

0. (1.3)Here theW i are independent Brownian motions. The self-stabilizing e�e
t we are interested in originatesin the global a
tion of the system on the individual parti
le motion in the large parti
le limit N → ∞.Under suitable assumptions, in this limit the empiri
al measures 1
N

∑N
j=1 δXj,N

t

an be shown to 
onvergeto some law uε

t for ea
h �xed time and noise intensity, and ea
h individual parti
le's motion 
onvergesin probability to the solution of the di�usion equation
dX i

t = V (X i
t) dt−

∫

IRd

Φ(X i
t − x) duε

t (x) dt +
√
εdW i

t . (1.4)The aim of this paper is to extend the well known Kramers-Eyring law of exit from domains withnon-
riti
al boundaries by parti
les di�using in potential lands
apes with small Gaussian noise to sys-tems (1.1) whi
h in
lude the des
ribed self-stabilization e�e
t. In the potential gradient 
ase withoutintera
tion, in whi
h the individual parti
le's motion is interpreted by the solution traje
tories Zε of theSDE
dZε

t = −∇U(Zε
t ) dt+

√
εdWt, (1.5)Kramers' law states that, in the small noise limit ε→ 0, the asymptoti
 exit time of Zε from a potentialwell of height H is of the order exp{ 2H

ε }. See the beginning of se
tion 4 for a pre
ise formulationof this. We derive a similar statement for self-stabilizing di�usions. In parti
ular we examine howself-stabilization adds inertia to the individual parti
le's motion, delaying exit times from domains ofattra
tion and altering exit lo
ations. Mathemati
ally, the natural framework for su
h an analysis is largedeviations theory for di�usions. Our key ingredient for an understanding of the small noise asymptoti
sof the exit times proves to be a large deviations prin
iple for self-stabilizing di�usions (1.1). In thepotential gradient 
ase, the rate fun
tion in the large deviations prin
iple just minimizes the energyneeded to travel in the potential lands
ape. If the parti
le undergoes self-stabilization, energy has to beminimized in a lands
ape whi
h additionally takes into a

ount the potential of an attra
tive for
e thatdepends on the parti
le's distan
e from the 
orresponding deterministi
 path (1.2). Our main results(Theorems 3.4 and 4.1, 4.2) state that the large deviations and the exit behavior of Xε are governedby this modi�ed rate fun
tion. The te
hniques we employ to relate this time inhomogeneous 
ase to2



the 
lassi
al time homogeneous one stipulate the assumption that the boundaries of the domains avoid
riti
al points of the potential.Intera
ting parti
le systems su
h as (1.3) have been studied from various points of view. A survey aboutthe general setting for intera
tion (under global Lips
hitz and boundedness assumptions) may be foundin [14℄. There the 
onvergen
e of the parti
le system to a self-stabilizing di�usion is des
ribed in thesense of a M
Kean-Vlasov limit, and asymptoti
 independen
e of the parti
les, known under the namepropagation of 
haos as well as the link to Burgers' equation are established. Large deviations of theparti
le system from the M
Kean-Vlasov limit were investigated by Dawson and Gärtner [4℄. Furtherresults about the 
onvergen
e of the empiri
al distribution of the parti
le system to the law of the self-stabilizing di�usion may be found in [3℄ or [10℄.M
Kean studies a 
lass of Markov pro
esses that 
ontains the solution of the limiting equation underglobal Lips
hitz assumptions on the stru
ture of the intera
tion [11℄. A stri
tly lo
al form of intera
tionwas investigated by Stroo
k and Varadhan in simplifying its fun
tional des
ription to a Dira
 measure[13℄. Oels
hläger studies the parti
ular 
ase where intera
tion is represented by the derivative of the Dira
measure at zero [12℄. Funaki addresses existen
e and uniqueness for the martingale problem asso
iatedwith self-stabilizing di�usions [9℄.The behavior of self-stabilizing di�usions, in parti
ular the 
onvergen
e to invariant measures, was studiedby various authors under di�erent assumptions on the stru
ture of the intera
tion, see e.g. [16℄, [15℄, [1℄and [2℄.The material in this paper is organized as follows. In se
tion 2 we dis
uss existen
e and uniqness of strongsolutions to equation (1.1). Strong solvability is non-trivial in our setting due to the self-stabilizing term,and is required for the subsequent investigation of large deviations. In se
tion 3 we derive and analyzethe rate fun
tion modi�ed by self-intera
tion, and this way obtain a large deviations prin
iple for thedi�usion (1.1). This proves to be the key ingredient for the analysis of exit times and a derivation of aversion of Kramers' law for self-stabilizing di�usions in se
tion 4. We 
on
lude with an illustration ofour main results by dis
ussing some examples whi
h emphasize the in�uen
e of self-stabilization on exittime and exit lo
ation (se
tion 5).2 Existen
e and uniqueness of a strong solutionThe derivation of a large deviations prin
iple for the self-stabilizing di�usion (1.1) in the subsequentse
tion involves pathwise 
omparisons between di�usions in order to apply the usual tools from largedeviations theory, su
h as 
ontra
tion prin
iples and the 
on
ept of exponential equivalen
e. Theirappli
ability relies on strong existen
e and uniqueness for equation (1.1), whi
h is non-trivial in oursituation sin
e the solution pro
ess' own law appears in the equation. The interesting intera
tion term∫
Φ(Xε

t − x) duε
t (x) also adds a 
onsiderable amount of 
omplexity to the mathemati
al treatment. Itdepends on uε

t = IP ◦(Xε
t )−1, thus 
lassi
al existen
e and uniqueness results on SDE as well as the
lassi
al results on large deviations for di�usions (Freidlin-Wentzell theory) are not dire
tly appli
able.Consequently, the question of existen
e and uniqueness of solutions for equation (1.1) is an integral partin any dis
ussion of the self-stabilizing di�usion's behavior, and will be addressed in this se
tion.We follow Bena
hour et al. [1℄ to design a re
ursive pro
edure in order to prove the existen
e of theintera
tion drift b(t, x) =
∫

Φ(x − y) duε
t (y), the se
ond drift 
omponent of (1.1). More pre
isely, weshall 
onstru
t a lo
ally Lips
hitz drift term b(t, x) su
h that the 
lassi
al SDE

dXε
t = V (Xε

t ) dt− b(t,Xε
t ) dt+

√
εdWt, t ≥ 0, (2.1)3



admits a unique strong solution, whi
h satis�es the additional 
ondition
b(t, x) =

∫

IRd

Φ(x − y) duε
t (y) = IE

{
Φ(x−Xε

t )
}
. (2.2)In (2.1) W is a standard d-dimensional Brownian motion, and V : IRd → IRd mimi
s the geometri
alstru
ture of a potential gradient. Existen
e and uniqueness for equation (1.1) will be understood in thesense that (2.1) and (2.2) hold with a unique b and a pathwise unique pro
ess X . For lo
ally Lips
hitzintera
tion fun
tions of at most polynomial growth, Bena
hour et al. [1℄ have proved the existen
e ofstrong solutions in the one-dimensional situation, and in the absen
e of the ve
tor �eld V . Sin
e Vfor
es the di�usion to spend even more time in bounded sets due to its dissipativity formulated below,it imposes no 
ompli
ations 
on
erning questions of existen
e and uniqueness. Our arguments rely on amodi�
ation of their 
onstru
tion.Besides some Lips
hitz type regularity 
onditions on the 
oe�
ients, we make assumptions 
on
erningthe geometry of V and Φ whi
h render the system (3.1) dissipative in a suitable sense. All ne
essary
onditions are summarized in the following assumption.2.1 Assumption.i) The 
oe�
ients V and Φ are lo
ally Lips
hitz, i.e. for R > 0 there exists KR > 0 s.t.

‖V (x) − V (y)‖ + ‖Φ(x) − Φ(y)‖ ≤ KR ‖x− y‖ (2.3)for x, y ∈ BR(0) = {z ∈ IRd : ‖z‖ < R}.ii) The intera
tion fun
tion Φ is rotationally invariant, i.e. there exists an in
reasing fun
tion φ :

[0,∞) → [0,∞) with φ(0) = 0 su
h that
Φ(x) =

x

‖x‖φ(‖x‖), x ∈ IRd . (2.4)iii) Φ grows at most polynomially: there exist K > 0 and r ∈ IN su
h that
‖Φ(x) − Φ(y)‖ ≤ ‖x− y‖

(
K + ‖x‖r + ‖y‖r )

, x, y ∈ IRd . (2.5)iv) V is 
ontinuously di�erentiable. Let DV (x) denote the Ja
obian of V . We assume that there exist
KV > 0 and R0 > 0 su
h that

〈h,DV (x)h〉 ≤ −KV (2.6)for h ∈ IRd s.t. ‖h‖ = 1 and x ∈ IRd s.t. ‖x‖ ≥ R0.The 
onditions that make our di�usion dissipative are (2.4) and (2.6). (2.4) means that the intera
-tion is essentially not more 
ompli
ated than in the one-dimensional situation and has some importantimpli
ations for the geometry of the drift 
omponent IE
[
Φ(x − Xε

t )
] originating from self-intera
tion,namely that it points ba
k to the origin. The same holds true for V due to (2.6). In the gradient 
ase

V = −∇U , −DV is the Hessian of U , and (2.6) means that its eigenvalues are uniformly bounded frombelow (w.r.t. x) on neighborhoods of ∞. (2.5) is just a 
onvenient way to 
ombine polynomial growthand the lo
al Lips
hitz assumption in one 
ondition. In the following two lemmas we summarize a fewsimple 
onsequen
es of these assumptions.2.2 Lemma. There exist 
onstants K, η,R1 > 0 su
h that the following holds true:a) For all x, y ∈ IRd

〈
x− y, V (x) − V (y)

〉
≤ K ‖x− y‖2

. (2.7)4



b) For x, y ∈ IRd su
h that ‖x− y‖ ≥ R1

〈
x− y, V (x) − V (y)

〉
≤ −η ‖x− y‖2

. (2.8)
) For x ∈ IRd with ‖x‖ ≥ R1 〈
x, V (x)

〉
≤ −η ‖x‖2

. (2.9)Proof. Note �rst that, by 
ontinuity of DV , there exists K > 0 su
h that
〈h,DV (x)h〉 ≤ Kholds for all x and all h of norm 1. Moreover, for x, y ∈ IRd, x 6= y, we have

V (x) − V (y)

‖x− y‖ =

∫ 1

0

DV (y + t(x− y))
x− y

‖x− y‖ dt,and therefore 〈 x− y

‖x− y‖ ,
V (x) − V (y)

‖x− y‖
〉

=

∫ 1

0

〈
h,DV (y + t ‖x− y‖h)h

〉
dt, (2.10)where h := x−y

‖x−y‖ . Sin
e the integrand is bounded by K, this proves a).For b), observe that the proportion of the line 
onne
ting x and y that lies inside BR0
(0) is at most

2R0

‖x−y‖ . Hen
e 〈 x− y

‖x− y‖ ,
V (x) − V (y)

‖x− y‖
〉
≤ K

2R0

‖x− y‖ −KV

(
1 − 2R0

‖x− y‖
)
,whi
h yields b).
) is shown in a similar way. Let x ∈ IRd with ‖x‖ > R0, and set y := R0

x
‖x‖ . Then the same argumentshows the sharper bound

−KV ≥
〈 x− y

‖x− y‖ ,
V (x) − V (y)

‖x− y‖
〉

=
〈 x

‖x‖ ,
V (x) − V (y)

‖x‖ −R0

〉
,sin
e the line 
onne
ting x and y does not interse
t BR0

(0). Hen
e
〈x, V (x)〉 ≤ −KV ‖x‖ (‖x‖ −R0) + ‖x‖ ‖V (y)‖ ,whi
h shows that (2.9) is satis�ed if we set R1 = max{2R0, 4 sup‖y‖=R0

‖V (y)‖
KV

} and η = KV

4 .2.3 Lemma. For all x, y, z ∈ IRd we havea) ‖Φ(x− y)‖ ≤ 2K +
(
K + 2r+1

)(
‖x‖r+1 + ‖y‖r+1 ),b) ‖Φ(x− z) − Φ(y − z)‖ ≤ ‖x− y‖

[
K + 2r

(
‖x‖r

+ ‖y‖r
+ 2 ‖z‖r )],
) ‖Φ(x− y) − Φ(x− z)‖ ≤ K1 ‖y − z‖

(
1 + ‖x‖r )(

1 + ‖y‖r
+ ‖z‖r ), where K1 = max(K, 2r+1).d) For all x, y ∈ IRd and n ∈ IN

〈
x ‖x‖n − y ‖y‖n

,Φ(x− y)
〉
≥ 0. (2.11)Proof. By (2.5) and sin
e Φ(0) = 0 we have

‖Φ(x − y)‖ ≤ ‖x− y‖
(
K + ‖x− y‖r )

≤ K
(
‖x‖ + ‖y‖

)
+ 2r+1

(
‖x‖r+1

+ ‖y‖r+1 )

≤ K
(
2 + ‖x‖r+1

+ ‖y‖r+1 )
+ 2r+1

(
‖x‖r+1

+ ‖y‖r+1 )

= 2K +
(
K + 2r+1

)(
‖x‖r+1

+ ‖y‖r+1 )
,5



i.e. a) is proved. For b), we use (2.5) again to see that
‖Φ(x − z) − Φ(y − z)‖ ≤ ‖x− y‖

(
K + ‖x− z‖r

+ ‖y − z‖r )

≤ ‖x− y‖
[
K + 2r

(
‖x‖r

+ ‖y‖r
+ 2 ‖z‖r )]

.Property 
) follows from Φ(−x) = −Φ(x) by further exploiting b) as follows. We have
‖Φ(x − y) − Φ(x− z)‖ ≤ ‖x− y‖

[
K + 2r+1

(
‖x‖r

+ ‖y‖r
+ ‖z‖r )]

,whi
h obviously yields 
). Finally, d) follows from a simple 
al
ulation and (2.4). Obviously, (2.11)is equivalent to 〈x ‖x‖n − y ‖y‖n
, x − y〉 ≥ 0. But this is an immediate 
onsequen
e of the S
hwarzinequality.Let us now return to the 
onstru
tion of a solution to (1.1), i.e. a solution to the pair (2.1) and (2.2). The
ru
ial property of these 
oupled equations is that the drift b depends on (the law of) Xε and thereforealso on V , ε and the initial 
ondition x0. This means that a solution of (2.1) and (2.2) 
onsists of a pair

(X, b), a 
ontinuous sto
hasti
 pro
ess X and a drift term b, that satis�es these two equations.Our 
onstru
tion of su
h a pair (X, b) shall fo
us on the existen
e of the intera
tion drift b. It willbe 
onstru
ted as a �xed point in an appropriate fun
tion spa
e su
h that the 
orresponding solutionof (2.1) ful�lls (2.2). Let us �rst derive some properties of b that follow from (2.2).2.4 Lemma. Let T > 0, and let (Xt)0≤t≤T be a sto
hasti
 pro
ess su
h that sup
0≤t≤T

IE
[
‖Xt‖r+1 ]

< ∞.Then b(t, x) = IE
[
Φ(x−Xt)

] has the following properties:a) b is lo
ally Lips
hitz w.r.t. x ∈ IRd, and the Lips
hitz 
onstant is independent of t ∈ [0, T ].b) 〈
x− y, b(t, x) − b(t, y)

〉
≥ 0 for all x, y ∈ IRd, t ∈ [0, T ].
) b grows polynomially of order r + 1.Proof. Note �rst that y 7→ Φ(x − y) grows polynomially of order r + 1 by Lemma 2.3 a), so that b iswell-de�ned. Moreover, we have

‖b(t, x)‖ ≤ IE
[
‖Φ(x−Xt)‖

]
≤ 2K +

(
K + 2r+1

)(
‖x‖r+1

+ IE
[
‖Xt‖r+1 ])

,whi
h proves 
). For a) observe that, by Lemma 2.3 b), we have for z ∈ IRd, x, y ∈ BR(0)

‖Φ(x− z) − Φ(y − z)‖ ≤ ‖x− y‖
[
K + 2r+1

(
Rr + ‖z‖r )]

.Hen
e
‖b(t, x) − b(t, y)‖ ≤ IE

[
‖Φ(x−Xt) − Φ(y −Xt)‖

]

≤ ‖x− y‖
[
K + 2r+1

(
Rr + IE

[
‖Xt‖r ])]for x, y ∈ BR(0). Sin
e sup

0≤t≤T
IE

[
‖Xt‖r+1 ]

<∞, this implies a).In order to prove b), �x t ∈ [0, T ], and let µ = IP ◦X−1
t . Then

〈x− y, b(t, x) − b(t, y)〉 =

∫ 〈
x− y,

x− u

‖x− u‖φ(‖x− u‖) − y − u

‖y − u‖φ(‖y − u‖)
〉
µ(du).The integrand is non-negative. Indeed, it equals

‖x− u‖φ(‖x− u‖) + ‖y − u‖φ(‖y − u‖) −
〈
y − u,

x− u

‖x− u‖φ(‖x− u‖)
〉
−

〈
x− u,

y − u

‖y − u‖φ(‖y − u‖)
〉

≥ ‖x− u‖φ(‖x− u‖) + ‖y − u‖φ(‖y − u‖) − ‖y − u‖φ(‖x− u‖) − ‖x− u‖φ(‖y − u‖)
= (‖x− u‖ − ‖y − u‖)(φ(‖x− u‖) − φ(‖y − u‖)),whi
h is non-negative sin
e φ is in
reasing, so b) is established.6



In the light of the pre
eding lemma it is reasonable to de�ne a spa
e of fun
tions that satisfy the abovestated 
onditions, and to look for a 
andidate for the drift fun
tion in this spa
e. Let T > 0, and for a
ontinuous fun
tion b : [0, T ]× IRd → IRd de�ne
‖b‖T := sup

t∈[0,T ]

sup
x∈IRd

‖b(t, x)‖
1 + ‖x‖2q , (2.12)where q ∈ IN is a �xed 
onstant su
h that 2q > r, the order of the polynomial growth of the intera
tionfun
tion Φ. Furthermore, let

ΛT :=
{
b : [0, T ]× IRd → IRd

∣∣∣ ‖b‖T <∞, x 7→ b(t, x) is lo
ally Lips
hitz, uniformly w.r.t. t}. (2.13)Lemma 2.4 shows that, besides being an element of ΛT , the drift of (2.1) must satisfy the dissipativity
ondition 〈
x− y, b(t, x) − b(t, y)

〉
≥ 0, x, y ∈ IRd . (2.14)Therefore, we de�ne

ΛT :=
{
b ∈ ΛT : b satis�es (2.14)}. (2.15)It is obvious that ‖·‖T is indeed a norm on the ve
tor spa
e ΛT . The subset ΛT will be the obje
t ofinterest for our 
onstru
tion of the intera
tion drift in what follows, i.e. we shall 
onstru
t the intera
tiondrift as an element of ΛT for a proper 
hoi
e of the time horizon T .On
e we have 
onstru
ted the drift, the di�usion X will simply be given as the unique strong solutionof (2.1) due to the following rather 
lassi
al result about strong solvability of SDEs. It ensures theexisten
e of a unique strong solution to (2.1) for a given drift b and is a 
onsequen
e of Theorem 10.2.2in [13℄, sin
e pathwise uniqueness, non-explosion and weak solvability imply strong solvability.2.5 Proposition. Let β : IR+ × IRd → IRd, (t, x) 7→ β(t, x), be lo
ally Lips
hitz, uniformly w.r.t.

t ∈ [0, T ] for ea
h T > 0, and assume that
sup

0≤t≤T
‖β(t, 0)‖ <∞for all T > 0. Moreover, suppose that there exists r0 > 0 su
h that

〈x, β(t, x)〉 ≤ 0 for ‖x‖ ≥ r0.Then the SDE
dXt = β(t,Xt) dt+

√
εdWtadmits a unique strong solution for any random initial 
ondition X0.It is easily seen that the drift β(t, x) = V (x)−b(t, x) does indeed satisfy the assumptions of Proposition 2.5for any b ∈ ΛT . This is an immediate 
onsequen
e of (2.9) and (2.14).To 
onstru
t a solution of (1.1), we pro
eed in two steps. In the �rst and te
hni
ally most demandingstep, we 
onstru
t a drift on a small time interval [0, T ]. We shall de�ne an operator Γ su
h that (2.2)translates into a �xed point property for this operator. To ensure the existen
e of a �xed point, one needs
ontra
tion properties of Γ whi
h shall turn out to depend on the time horizon T . This way we obtaina drift de�ned on [0, T ] su
h that the asso
iated solution X exists up to time T . In a se
ond step, weshow that this solution's moments are uniformly bounded w.r.t. time, whi
h guarantees non-explosionand allows us to extend X to the whole time axis.To 
arry out this program, we start by 
omparing di�usions with di�erent drift terms.7



2.6 Lemma. For b1, b2 ∈ ΛT 
onsider the asso
iated di�usions
dYt = V (Yt) dt− b1(t, Yt) dt+

√
εdWtand

dZt = V (Zt) dt− b2(t, Zt) dt+
√
εdWt,and assume Y0 = Z0. Then for t ≤ T

‖Yt − Zt‖ ≤ eKT
∥∥b1 − b2

∥∥
T

∫ t

0

(
1 + ‖Zs‖2q )

ds.Proof. Sin
e Y − Z is governed by a (pathwise) ODE, we have
‖Yt − Zt‖ =

∫ t

0

〈 Ys − Zs

‖Ys − Zs‖
, V (Ys) − V (Zs)

〉
ds−

∫ t

0

〈 Ys − Zs

‖Ys − Zs‖
, b1(s, Ys) − b1(s, Zs)

〉
ds

+

∫ t

0

〈 Ys − Zs

‖Ys − Zs‖
, b2(s, Zs) − b1(s, Zs)

〉
ds.The se
ond integral in this de
omposition is positive by de�nition of ΛT , so it 
an be negle
ted. Fur-thermore, the �rst integral is bounded by K ∫ t

0 ‖Ys − Zs‖ ds due to the dissipativity 
ondition (2.7) on
V . The last integral is bounded by

∫ t

0

∥∥b2(s, Zs) − b1(s, Zs)
∥∥ ds ≤

∥∥b1 − b2
∥∥

T

∫ t

0

(1 + ‖Zs‖2q
) ds.Combining these estimates yields

‖Yt − Zt‖ ≤ K

∫ t

0

‖Ys − Zs‖ ds+
∥∥b1 − b2

∥∥
T

∫ t

0

(1 + ‖Zs‖2q
) ds.Now an appli
ation of Gronwall's lemma 
ompletes the proof.The liberty of 
hoi
e for the drift terms in Lemma 2.6 allows us to get bounds on Y and its moments bymaking a parti
ular one for Z. We 
onsider the spe
ial 
ase of a linear drift term b(t, x) = λx.2.7 Lemma. Let λ ≥ K, and let Z be the solution of

dZt = V (Zt) dt− λZt dt+
√
ε dWt.Furthermore, assume that IE(‖Z0‖2m) <∞ for some m ∈ IN, m ≥ 1.Then for all t ≥ 0

IE
[
‖Zt‖2m ]

≤ 2mt ‖V (0)‖R2m−1
1 exp

{ε(dm+m− 1)t

R2
1

}
, if Z0 = 0 a.s.,and

IE
[
‖Zt‖2m ]

≤ IE
[
‖Z0‖2m ]

exp

{
ε(dm+m− 1)t
(
IE

[
‖Z0‖2m ]) 1

m

}
+ 2mt ‖V (0)‖R2m−1

1 exp
{ε(dm+m− 1)t

R2
1

}
,otherwise.Proof. By It�'s formula we have for n ≥ 2

‖Zt‖n
= ‖Z0‖n

+Mn
t +n

∫ t

0

‖Zs‖n−2 〈
Zs, V (Zs)

〉
−λ ‖Zs‖n

ds+
ε

2
(dn+n−2)

∫ t

0

‖Zs‖n−2
ds, (2.16)8



where Mn is the lo
al martingale Mn
t = n

√
ε
∫ t

0
〈Zs ‖Zs‖n−2

, dWs〉.Sin
e 〈x, V (x)〉 ≤ −η ‖x‖2 for ‖x‖ > R1 a

ording to (2.9), the �rst integrand of (2.16) is negative if
‖Zs‖ > R1. If ‖Zs‖ ≤ R1, we use the global estimate 〈x, V (x)〉 ≤ K ‖x‖2

+ ‖V (0)‖ ‖x‖, whi
h followsfrom (2.7). We dedu
e that, sin
e λ ≥ K,
‖Zs‖n−2 〈

Zs, V (Zs)
〉
− λ ‖Zs‖n ≤ (K − λ) ‖Zs‖n

+ ‖V (0)‖ ‖Zs‖n−1 ≤ ‖V (0)‖Rn−1
1 .Thus,

‖Zt‖n ≤ ‖Z0‖n
+Mn

t + n ‖V (0)‖ tRn−1
1 +

ε

2
(dn+ n− 2)

∫ t

0

‖Zs‖n−2
ds. (2.17)Using a lo
alization argument and monotone 
onvergen
e yields

IE
[
‖Zt‖n ]

≤ IE
[
‖Z0‖n ]

+ n ‖V (0)‖ tRn−1
1 +

ε

2
(dn+ n− 2)

∫ t

0

IE
[
‖Zs‖n−2 ]

ds. (2.18)We 
laim that this implies
IE

[
‖Zt‖2m ]

≤
m∑

j=0

IE
[
‖Z0‖2(m−j) ] (αmt)

j

j!
+ 2m

‖V (0)‖
αm

R2m+1
1

m∑

j=1

(αmt)
j

R2j
1 j!

(2.19)for all m ∈ IN, m ≥ 1, where αm = ε(dm +m− 1). Indeed, for m = 1 this is evidently true by (2.18).The general 
ase follows by indu
tion. Assume (2.19) holds true for m− 1. Then by (2.18)
IE

[
‖Zt‖2m ]

≤ IE
[
‖Z0‖2m ]

+ 2m ‖V (0)‖ tR2m−1
1

+ αm

∫ t

0

m∑

j=1

IE
[
‖Z0‖2(m−j) ] (αm−1s)

j−1

(j − 1)!
+ 2(m− 1)

‖V (0)‖
αm−1

R2m−1
1

m∑

j=2

(αm−1s)
j−1

R
2(j−1)
1 (j − 1)!

ds

≤ IE
[
‖Z0‖2m ]

+ 2m ‖V (0)‖ tR2m−1
1

+

m∑

j=1

αm IE
[
‖Z0‖2(m−j) ]α j−1

m−1 t
j

j!
+ 2m ‖V (0)‖R2m−1

1

m∑

j=2

αm

α j−2
m−1 t

j

R
2(j−1)
1 j!

≤ 2m ‖V (0)‖ tR2m−1
1 +

m∑

j=0

IE
[
‖Z0‖2(m−j) ]αj

m tj

j!
+ 2m ‖V (0)‖R2m+1

1

m∑

j=2

α j−1
m tj

R2j
1 j!

=

m∑

j=0

IE
[
‖Z0‖2(m−j) ]αj

m tj

j!
+ 2m ‖V (0)‖R2m+1

1

m∑

j=1

α j−1
m tj

R2j
1 j!

,and so (2.19) is established. Sin
e IE
[
‖Z0‖2(m−j) ]

≤
(
IE

[
‖Z0‖2m ])1− j

m for j ≤ m, we may ex-ploit (2.19) further to 
on
lude that
IE

[
‖Zt‖2m ]

≤ IE
[
‖Z0‖2m ] m∑

j=0

αj
m tj

j!
(
IE

[
‖Z0‖2m ]) j

m

+ 2mt ‖V (0)‖R2m−1
1

m∑

j=1

α j−1
m tj−1

R2j−2
1 j!

≤ IE
[
‖Z0‖2m ]

exp

{
αmt

(
IE

[
‖Z0‖2m ]) 1

m

}
+ 2mt ‖V (0)‖R2m−1

1 exp
{αmt

R2
1

}
,whi
h is the announ
ed bound if we identify the �rst term as zero in 
ase Z0 = 0.Let us de�ne the mapping Γ on ΛT that will be a 
ontra
tion under suitable 
onditions. For b ∈ ΛT ,denote by X(b) the solution of

dXt = V (Xt) dt− b(t,Xt) dt+
√
εdWt, (2.20)and let Γb(t, x) := IE

[
Φ

(
x −X

(b)
t

)]. By 
ombining the two previous lemmas, we obtain the following apriori bound on the moments of X(b). 9



2.8 Lemma. Assume that the initial datum of (2.20) satis�es IE
[∥∥X(b)

0

∥∥2qn]
<∞ for some n ∈ IN.For ea
h T > 0 there exists k = k(n, T ) > 0 su
h that for all b ∈ ΛT

sup
0≤t≤T

IE
[∥∥X(b)

t

∥∥n]
≤ k

(
1 + TenKT

(
‖b‖n

T +Kn
))
.Proof. Let b1(t, x) := b(t, x) and b2(t, x) = Kx, and denote by Y , Z the di�usions asso
iated with b1,

b2. By Lemma 2.6 we have for t ∈ [0, T ]

IE
[
‖Yt‖n ]

≤ 2n(IE
[
‖Zt‖n ]

+ IE
[
‖Yt − Zt‖n ]

)

≤ 2n IE
[
‖Zt‖n ]

+ 2nenKT
∥∥b1 − b2

∥∥n

T
IE

[ ∫ t

0

(1 + ‖Zs‖2q
)nds

]

≤ 2n
(
1 + IE

[
‖Zt‖2qn ])

+ 2nenKT t
( ∥∥b1

∥∥
T

+
∥∥b2

∥∥
T

)n
sup

0≤s≤T
IE

[
(1 + ‖Zs‖2q

)n
]

≤ 8n
(
1 + sup

0≤s≤T
IE

[
‖Zs‖2qn ])(

1 + tenKT
( ∥∥b1

∥∥n

T
+

∥∥b2
∥∥n

T

))
.Due to the assumption IE

[∥∥X(b)
0

∥∥2qn]
< ∞, the 
onstant k(n, T ) = 8n

(
1 + sup0≤s≤T IE

[
‖Zs‖2qn ]) is�nite by Lemma 2.7. Furthermore, we have ∥∥b2

∥∥
T
≤ K, i.e. the lemma is proved.Now we are in a position to establish the lo
al Lips
hitz 
ontinuity of the operator Γ. The expli
itexpression for the Lips
hitz 
onstant shows that Γ will be a 
ontra
tion on a su�
iently small timeinterval.2.9 Lemma. Let b1, b2 ∈ ΛT , and denote by Y ,Z the 
orresponding di�usions as in Lemma 2.6. For

i ∈ IN let mi(T ) = sup0≤t≤T IE
[
‖Yt‖i ] and ni(T ) = sup0≤t≤T IE

[
‖Zt‖i ].There exists a 
onstant k = k(m4q(T ), n4q(T )) su
h that

‖Γb1 − Γb2‖T ≤ k
√
TeKT ‖b1 − b2‖T .Proof. From Lemma 2.3 
) and the Cau
hy-S
hwarz inequality follows that

∥∥Γb1(t, x) − Γb2(t, x)
∥∥ ≤ IE

[
‖Φ(x− Yt) − Φ(x− Zt)‖

]

≤ K1

(
1 + ‖x‖r )

IE
[
‖Yt − Zt‖

(
1 + ‖Yt‖r + ‖Zt‖r )]

≤ K1

(
1 + ‖x‖r )√

IE
[
‖Yt − Zt‖2 ]

IE
[(

1 + ‖Yt‖r
+ ‖Zt‖r )2]

,where K1 = max(K, 2r+1). By Lemma 2.6, sin
e (1 + x)2 ≤ 2(1 + x2), we have
IE

[
‖Yt − Zt‖2 ]

≤ e2KT
∥∥b1 − b2

∥∥2

T
IE

[( ∫ T

0

(
1 + ‖Zs‖2q )

ds
)2 ]

≤ e2KT
∥∥b1 − b2

∥∥2

T

∫ T

0

IE
[
(1 + ‖Zs‖2q

)2
]
ds

≤ 2T e2KT
∥∥b1 − b2

∥∥2

T

(
1 + sup

0≤s≤T
IE

[
‖Zs‖4q ])

.Moreover, using the inequality (a+ b)2 ≤ 2(a2 + b2), we dedu
e that
IE

[(
1 + ‖Yt‖r

+ ‖Zt‖r )2] ≤ 2
(
1 + 2 IE

[
‖Yt‖2r

+ ‖Zt‖2r ]
) ≤ 10

(
1 + IE

[
‖Yt‖4q

+ ‖Zt‖4q ]
),where we exploited that 2q > r implies IE

[
‖Yt‖2r

] ≤ 1 + IE
[
‖Yt‖4q

], and likewise for the moment of Zt.By 
ombining all these estimates, we �nd that
∥∥Γb1(t, x) − Γb2(t, x)

∥∥

1 + ‖x‖2q ≤ 2K1

√
5T eKT

∥∥b1 − b2
∥∥

T

1 + ‖x‖r

1 + ‖x‖2q

×
(
1 + sup

0≤s≤T
IE

[
‖Zs‖4q ])1/2(

1 + IE
[
‖Yt‖4q

+ ‖Zt‖4q ])1/2

.10



Hen
e, if we set k := 4K1

√
5
{(

1 + n4q(T )
)(

1 +m4q(T ) + n4q(T )
)}1/2, we may 
on
lude that

∥∥Γb1 − Γb2
∥∥

T
≤ k

√
T eKT

∥∥b1 − b2
∥∥

T
,i.e. k is the desired 
onstant.The next proposition shows that the restri
tion of Γ to a suitable subset of the fun
tion spa
e ΛT is a
ontra
tive mapping, whi
h allows us to 
onstru
t a solution on a small time interval.2.10 Proposition. For ν > 0 let Λν

T = {b ∈ ΛT : ‖b‖T ≤ ν}. Assume that the initial 
ondition X0satis�es IE
[
‖X0‖2qn ]

< ∞ for some n ≥ 4q. There exists ν0 > 0 su
h that for any ν ≥ ν0 there exists
T = T (ν) > 0 su
h that the following holds true:a) Γ(Λν

T ) ⊂ Λν
T , and the Lips
hitz 
onstant of Γ|Λν

T is less than 1
2 .b) There exists a strong solution to (2.1), (2.2) on [0, T ] whi
h satis�es

sup
0≤t≤T

IE
[∥∥X(b)

t

∥∥n]
≤ k

(
1 + TenKT

(
νn +Kn

))
,where k = k(n, T ) is the 
onstant introdu
ed in Lemma 2.8.Proof. Let b ∈ ΛT , and let X = X(b) and mi(T ) = sup0≤t≤T IE

[
‖Xt‖i ] for i ∈ IN. By Lemma 2.8 the
ondition IE

[
‖X0‖2qn ]

<∞ implies mi(T ) <∞ for T > 0 and i ≤ n. Moreover, Lemma 2.3 shows that
‖Γb(t, x)‖ ≤ 2K + (K + 2r+1)

(
‖x‖r+1

+ IE
[
‖X‖r+1 ])

≤ K̃(1 + ‖x‖r+1
)
(
1 + IE

[
‖Xt‖r+1 ])

,where K̃ = 2K + 2r+1. Consequently, by de�nition of ‖·‖T ,
‖Γb‖T ≤ 2K̃(1 +mr+1(T )), t ≤ T. (2.21)By Lemma 2.8 there exists k = k(r + 1, T ) > 0 su
h that

mr+1(T ) ≤ k
(
1 + Te(r+1)KT

(
‖b‖r+1

T +Kr+1
))
. (2.22)This inequality, together with (2.21), is the key for �nding a suitable subset of ΛT on whi
h Γ is 
on-tra
tive. The r.h.s. of (2.22) 
onverges to k as T → 0, and this 
onvergen
e is uniform w.r.t. b ∈ Λν

Tfor ea
h ν > 0. The dependen
e of the limiting 
onstant k on T imposes no problem here; just �x
k = k(r + 1, T0) > 0 for some T0 and use the fa
t that (2.22) is valid for all T ≤ T0, as the proof ofLemma 2.8 shows.Thus, we may �x ν0 > 2K̃(1 + k) and dedu
e that for any ν > ν0 we 
an �nd T0 = T0(ν) su
h that
‖b‖T ≤ ν implies ‖Γb‖T ≤ ν for T ≤ T0. Moreover, by Lemma 2.4, Γb satis�es all the 
onditions asrequired for it to belong to ΛT , i.e. Γ maps Λν

T into itself for all T ≤ T0. Additionally, the assumption
n ≥ 4q implies that m4q(T ) is uniformly bounded for all b in Λν

T , and Lemma 2.9 shows that, by even-tually de
reasing T0, we 
an a
hieve that Γ is a 
ontra
tion on Λν
T with Lips
hitz 
onstant less than 1

2 ,i.e. a) is established.In order to prove b), the existen
e of a strong solution on the time interval [0, T ] for some T ≤ T0, weiterate the drift through Γ. Let b0 ∈ Λν
T , and de�ne
bn+1 := Γbn for n ∈ IN0 .The 
ontra
tion property of Γ yields ‖bn+1 − bn‖T ≤ 2−n ‖b1 − b0‖T for all n, and therefore

∞∑

n=0

‖bn+1 − bn‖T <∞,11



whi
h entails that (bn) is a Cau
hy sequen
e w.r.t. ‖·‖T . By de�nition of ‖·‖T , (bn) 
onverges pointwiseto a 
ontinuous fun
tion b = b(t, x) with ‖b‖T <∞. It remains to verify that the limit is again an elementof ΛT . In order to see that it is lo
ally Lips
hitz, let X(n) := X(bn). As in the proof of Lemma 2.4, wehave for x, y ∈ BR(0)

‖Γbn(t, x) − Γbn(t, y)‖ ≤ IE
[∥∥Φ(x−X

(n)
t ) − Φ(y −X

(n)
t )

∥∥]

≤ ‖x− y‖
[
K + 2r+1

(
Rr + IE

[∥∥X(n)
t

∥∥r])]
.Sin
e ‖bn‖T ≤ ν for all n, (2.22) yields

sup
n∈IN

sup
0≤t≤T

IE
[∥∥X(n)

t

∥∥r] ≤ k
(
1 + Te(r+1)KT

(
νr+1 +Kr+1

))
.Therefore, we may send n→ ∞ to 
on
lude that b is lo
ally Lips
hitz. b being the pointwise limit of the

bn, it inherits the polynomial growth property and the dissipativity 
ondition as stated in Lemma 2.4 b)and 
). (Noti
e that we may not invoke Lemma 2.4 at this stage.)It remains to show that the di�usion X = X(b) asso
iated to b has the desired properties. Note �rst thatthe existen
e of X is guaranteed by the 
lassi
al result of Proposition 2.5. Sin
e Γb = b, whi
h meansthat
b(t, x) = Γb(t, x) = IE

[
Φ(x−X

(b)
t )

]for t ∈ [0, T ] and x ∈ IRd, X is the di�usion with intera
tion drift b. The boundedness of its moments isagain a 
onsequen
e of Lemma 2.8.Let us re
all the essentials of the 
onstru
tion 
arried out so far. We have shown the existen
e of asolution to (1.1) on a small time interval [0, T ]. For the moments of order n to be �nite, one needsintegrability of order 2qn for the initial 
ondition. Moreover, the parameter n needs to be larger or equalto 4q in order for the �xed point argument of Proposition 2.10 to work. Observe that the 
ondition
n ≥ 4q appears �rst in this Proposition, sin
e this is the �rst time the pro
ess is 
oupled to its own drift,while in all previous statements the �niteness of moments is guaranteed by the 
omparison against thedi�usion Z, whi
h is governed by a linear drift term.In order to �nd a solution that exists for all times, we need to 
arefully extend the 
onstru
ted pair (X, b)beyond the time horizon T . Although non-explosion and �niteness of moments would be guaranteed forall T by Proposition 2.5 and Lemma 2.8, we have to take 
are of the fa
t that the drift itself is de�ned onlyon the time interval [0, T ]. With su�
iently strong integrability assumptions for X0 one 
ould performthe same 
onstru
tion on the time intervals [T, 2T ], [2T, 3T ] and so on, but one loses an integrabilityorder 2q in ea
h time step of length T .For that reason we need better 
ontrol of the moments of X over the whole time axis, whi
h is a
hievedby the following a posteriori estimate.2.11 Proposition. Let m ∈ IN, m ≥ 4q2, su
h that IE

[
‖X0‖2m ]

< ∞. For ea
h n ∈ {1, . . . ,m} thereexists a 
onstant α = α(n) > 0 su
h that the following holds true for all T > 0: if X solves (1.1) on
[0, T ], then

sup
0≤t≤T

IE
[
‖Xt‖2n ]

≤ α(n).Proof. Let fn(t) = IE[‖Xt‖2n], and let b(t, x) = IE
[
Φ(x−Xt)

]. We pro
eed in several steps.Step 1: Boundedness in L2. By Lemma 2.8 we know that sup0≤t≤T f1(t) < ∞. The only point is toshow that the bound may be 
hosen independent of T . By It�'s formula we have
f1(t) = IE

[
‖X0‖2 ]

+ εtd+ 2

∫ t

0

IE
[
〈Xs, V (Xs)〉

]
ds− 2

∫ t

0

IE
[
〈Xs, b(s,Xs)〉

]
ds.12



Let us �rst estimate the last term that 
ontains the intera
tion drift b. By its de�nition, we may takean independent 
opy X̃ of X , to write
2 IE

[
〈Xs, b(s,Xs)〉

]
= 2 IE

[
〈Xs,Φ(Xs − X̃s)〉

]
= IE

[
〈Xs,Φ(Xs − X̃s)〉

]
− IE

[
〈X̃s,Φ(Xs − X̃s)〉

]

= IE
[
〈Xs − X̃s,Φ(Xs − X̃s)〉

]
≥ 0where the last inequality is due to (2.4). In order to estimate the other integral, let R ≥ R1. Using (2.9)and the lo
al lips
hitz property of V , we see that

IE
[
〈Xs, V (Xs)〉

]
≤ −η IE

[
‖Xs‖2

1{‖Xs‖>R}

]
+ IE

[
(K ‖Xs‖2

+ ‖V (0)‖ ‖Xs‖)1{‖Xs‖≤R}

]

≤ −η IE
[
‖Xs‖2 ]

+ (η +K)R2 + ‖V (0)‖R = −ηf1(s) +R(‖V (0)‖ + R(η +K)).Obviously, f1 is di�erentiable, and summing up these bounds yields
f ′
1(t) ≤ εd− 2ηf1(t) + 2R(‖V (0)‖ +R(η +K)).Thus, there exists γ > 0 su
h that {t ∈ [0, T ] : f1(t) ≥ γ} ⊂ {t ∈ [0, T ] : f ′

1(t) ≤ 0}, whi
h implies
f1(t) ≤ f1(0) ∨ γ for all t ∈ [0, T ]. This is the 
laimed bound, sin
e γ is independent of T .Step 2: Moment bound for the 
onvolution. Let X̃ be an independent 
opy of X , i.e. a solution of (1.1)driven by a Brownian motion that is independent of W . In this step we shall prove that IE[‖Xt − X̃t‖2n]is uniformly bounded w.r.t. time.Let R ≥ R1, and let τ = inf{t ≥ 0 : ‖Xt − X̃t‖ ≥ R}, gn(t) = IE[‖Xt − X̃t‖2n

1{t<τ}] and wn(t) =

IE[‖Xt∧τ − X̃τ∧t‖2n]. Then wn(t) = gn(t) + R2n IP(t ≥ τ). Furthermore, using the SDE (1.1) for both
X and X̃ , applying It�'s formula to the di�eren
e and taking expe
tations, we obtain for n ≥ 1

wn(t) = IE[‖X0 − X̃0‖2n] + ε(dn+ n− 1) IE
[ ∫ t∧τ

0

‖Xs − X̃s‖2n−2 ds
]

+ 2n IE
[ ∫ t∧τ

0

‖Xs − X̃s‖2n−2〈Xs − X̃s, V (Xs) − V (X̃s)〉 ds
]

− 2n IE
[ ∫ t∧τ

0

‖Xs − X̃s‖2n−2〈Xs − X̃s, b(s,Xs) − b(s, X̃s)〉 ds
]
.The last term is negative by Lemma 2.4, whi
h yields together with (2.7), (2.8) and Hölder's inequality

w′
n(t) ≤ε(dn+ n− 1) IE

[
‖Xt − X̃t‖2n−2

1{t<τ}

]

+ 2n IE
[
‖Xt − X̃t‖2n−2〈Xt − X̃t, V (Xt) − V (X̃t)〉1{t<τ}

]

≤ ε(dn+ n− 1) gn−1(t) + 2n(K + η) IE
[
‖Xt − X̃t‖2n

1{‖Xt−X̃t‖≤R1 ; τ>t}
]

− 2nη IE
[
‖Xt − X̃t‖2n

1{t<τ}

]

≤ ε(dn+ n− 1) gn(t)1−
1

n + 2n(K + η)R2n
1 − 2nηgn(t).As in the �rst step, there exists some 
onstant δ > 0 su
h that {t ∈ [0, T ] : gn(t) > δ} ⊂ {t ∈ [0, T ] :

w′
n(t) < 0}. Sin
e wn − gn is non-de
reasing this implies gn(t) ≤ gn(0) ∨ δ for all t ∈ [0, T ]. Moreover,

δ depends only on the 
onstants appearing in the last inequality and is independent of the lo
alizationparameter. Hen
e, by monotone 
onvergen
e, we have
IE[‖Xt − X̃t‖2n] ≤ IE[‖X0 − X̃0‖2n] ∨ δ, t ∈ [0, T ].Step 3: Bound for the 
entered moments of X . In this step we shall prove that the moments of Yt :=

Xt − IE[Xt] are uniformly bounded. We pro
eed by indu
tion. The se
ond moments of X are uniformlybounded by the �rst step, so are those of Y . Assume the moments of order 2n are uniformly bounded13



by γn > 0. If n + 1 ≤ m, we may invoke step 2, to �nd δn+1 > 0 su
h that IE[‖Xt − X̃t‖2n+2] ≤ δn+1for t ∈ [0, T ]. Now we make the following observation. If ξ, ξ̃ are independent, real-valued 
opies of ea
hother with IE[ξ] = 0, then
IE

[
(ξ − ξ̃)2n+2

]
= 2 IE

[
ξ2n+2

]
+

2n∑

k=2

(
2n+ 2

k

)
(−1)k IE

[
ξk

]
IE

[
ξ2n+2−k

]
,and therefore

2 IE
[
ξ2n+2

]
≤ IE

[
(ξ − ξ̃)2n+2

]
+

2n∑

k=2

(
2n+ 2

k

) ∣∣IE
[
ξk

]
IE

[
ξ2n+2−k

]∣∣

≤ IE
[
(ξ − ξ̃)2n+2

]
+ 22n+2

(
1 + IE

[
ξ2n

])2
.Let us apply this to the 
omponents of Y , and denote them by Y 1, . . . , Y d. We obtain for t ∈ [0, T ]

2 IE
[
‖Yt‖2n+2 ]

≤ 2dn+1 IE
[ d∑

j=1

(Y j
t )2n+2

]

≤ dn+1
d∑

j=1

IE
[
(Xj

t − X̃j
t )2n+2

]
+ 22n+2

(
1 + IE

[
(Y j

t )2n
])2

≤ dn+2
(

IE
[
‖Xt − X̃t‖2n+2

]
+ 22n+2

(
1 + IE

[
‖Yt‖2n ])2

)

≤ dn+2
(
δn+1 + 22n+2

(
1 + γn

)2
)
,whi
h is a uniform bound for the order 2(n+ 1).Step 4: Bound for the moments of X . In the fourth and �nal step, we prove the announ
ed uniformbound for the moments of X . It follows immediately from the inequality

IE
[
‖Xt‖2n ]

≤ 22n
(
IE

[
‖Xt − IE[Xt]‖2n ]

+ ‖IE[Xt]‖2n )
.The last term satis�es ‖IE[Xt]‖2n ≤ f1(t)

n, whi
h is uniformly bounded a

ording to step 1, and the
entered moments of order 2n are uniformly bounded by step 3 whenever n ≤ m.The results 
on
erning the existen
e of Xε are summarized in the following theorem.2.12 Theorem. Let q :=
[

r
2 +1

], and let X0 be a random initial 
ondition su
h that IE
[
‖X0‖8q2 ]

<∞.Then there exists a drift term b(t, x) = bε,X0(t, x) su
h that (2.1) admits a unique strong solution Xεthat satis�es (2.2), and Xε is the unique strong solution of (1.1). Moreover, we have for all n ∈ IN

sup
t≥0

IE
[
‖Xε

t ‖2n ]
<∞ (2.23)whenever IE

[
‖Xε

0‖2n ]
<∞. In parti
ular, if X0 is deterministi
, then Xε is bounded in Lp(IP⊗λ[0,T ])for all p ≥ 1. λ is used as a symbol for Lebesgue measure throughout.Proof. In a �rst step, we prove uniqueness on a small time interval. Let K̃ = 2K + 2r+1, and 
hoose

α(q) > 0 a

ording to Proposition 2.11. By Proposition 2.10 there exist ν ≥ 2K̃(2+α(q)), T = T (ν) > 0and b ∈ Λν
T su
h that Γb = b, i.e. X = X(b) is a strong solution of (1.1) on [0, T ]. Assume Y isanother solution of (1.1) on [0, T ] starting at X0 su
h that m2q(T ) := sup0≤t≤T IE[‖Yt‖2q

] <∞, and let
c(t, x) = IE

[
Φ(x − Yt)

]. Then c ∈ ΛT by Lemma 2.4, and Γc = c. Moreover, it follows from (2.21) andProposition 2.11 that
‖c‖T ≤ 2K̃(2 +m2q(T )) ≤ 2K̃(2 + α(q)) ≤ ν,14



i.e. c ∈ Λν
T . Hen
e c is the unique �xed point of Γ|Λν

T . Thus c = b, and Proposition 2.5 yields X = Y.In the se
ond step, we show the existen
e of a unique solution on [0,∞). Let
U := sup

{
T > 0 : (1.1) admits a unique strong solution X on [0, T ], sup

0≤t≤T
IE

[
‖Xt‖2q ]

<∞
}
.By the �rst step we know that U > 0. Assume U <∞. As in the �rst step, 
hoose α(4q2) > 0 a

ordingto Proposition 2.11, and then �x ν̃ ≥ 2K̃(2 + α(4q2)) and T̃ = T̃ (ν̃) > 0 that satisfy Proposition 2.10.Let 0 < δ < min(U, T̃/2), and �x T ∈]U − δ, U [. There exists a unique strong solution X on [0, T ], and

IE[‖XT ‖8q2

] < ∞ by Proposition 2.11. Now 
onsider equation (1.1) on [T,∞) with initial datum XT .As in the �rst step, we may �nd a unique strong solution on [T, T + T̃ ]. But this is a 
ontradi
tion sin
e
T + T̃ > U . Consequently, U = ∞, and (2.23) holds by Proposition 2.11.3 Large deviationsLet us now turn to the large deviations behavior of the di�usion Xε given by the SDE (1.1), i.e.

dXε
t = V (Xε

t ) dt−
∫

IRd

Φ(Xε
t − x) duε

t (x) dt +
√
εdWt, t ≥ 0, X0 = x0 ∈ IRd . (3.1)The heuristi
s underlying large deviations theory is to identify a deterministi
 path around whi
h thedi�usion is 
on
entrated with overwhelming probability, so that the sto
hasti
 motion 
an be seen as asmall random perturbation of this deterministi
 path. This means in parti
ular that the law uε

t of Xε
tis 
lose to some Dira
 mass if ε is small. We therefore pro
eed in two steps towards the aim of provinga large deviations prin
iple for Xε. In a �rst step we �guess� the deterministi
 limit around whi
h Xεis 
on
entrated for small ε, and repla
e uε

t by its suspe
ted limit, i.e. we approximate the law of Xε.This way we 
ir
umvent the di�
ulty of the dependen
e on the law of Xε � the self-intera
tion term �and obtain a di�usion whi
h is de�ned by means of a 
lassi
al SDE. We then prove in the se
ond stepthat this di�usion is exponentially equivalent to Xε, i.e. it has the same large deviations behavior. Thisinvolves pathwise 
omparisons.3.1 Small noise asymptoti
s of the intera
tion driftThe limiting behavior of the di�usion Xε 
an be guessed in the following way. As explained, the laws
uε

t should tend to a Dira
 measure in the small noise limit, and sin
e Φ(0) = 0 the intera
tion termwill vanish in the limiting equation. Therefore, the di�usion Xε is a small random perturbation of thedeterministi
 motion ψ, given as the solution of the deterministi
 equation
ψ̇t = V (ψt), ψ0 = x0, (3.2)and the large deviations prin
iple will des
ribe the asymptoti
 deviation of Xε from this path. Mu
hlike in the 
ase of gradient type systems, the dissipativity 
ondition (2.9) guarantees non-explosion of ψ.Indeed, sin
e d

dt ‖ψt‖2
= 2〈ψt, ψ̇t〉 = 2〈ψt, V (ψt)〉, the derivative of ‖ψt‖2 is negative for large values of

‖ψt‖ by (2.9), so ψ is bounded. In the sequel we shall write ψt(x0) if we want to stress the dependen
eon the initial 
ondition.We have to 
ontrol the di�usion's deviation from this deterministi
 limit on a �nite time interval. Ana priori estimate is provided by the following lemma, whi
h gives an L2-bound for this deviation. Fornotational 
onvenien
e, we suppress the ε-dependen
e of the di�usion in the sequel, but keep in mindthat all pro
esses depend on ε. 15



3.1 Lemma. Let Zt := Xt − ψt(x0). Then
IE ‖Zt‖2 ≤ εtd e2Kt,where K is the 
onstant introdu
ed in Lemma 2.2. In parti
ular, Z → 0 as ε → 0 in Lp(IP⊗λ[0,T ]) forall p ≥ 1 and T > 0. This 
onvergen
e is lo
ally uniform w.r.t. the initial 
ondition x0.Proof. By It�'s formula we have

‖Zt‖2
= 2

√
ε

∫ t

0

〈Zs, dWs〉 − 2

∫ t

0

〈
Zs, b

ε,x0(s, Zs + ψs(x0))
〉
ds

+ 2

∫ t

0

〈
Zs, V (Zs + ψs(x0)) − V (ψs(x0))

〉
ds+ εtd.Sin
e X and thus Z is square-integrable by Theorem 2.12, the sto
hasti
 integral in this equation is amartingale. Now 
onsider the se
ond term 
ontaining the intera
tion drift bε,x0 . Let νs = IP ◦Z−1

s denotethe law of Zs, and re
all Assumption 2.1 ii) about the intera
tion fun
tion Φ. The latter implies
2 IE

〈
Zs, b

ε,x0(s, Zs + ψs(x0))
〉

= 2

∫ 〈
z, IE

[
Φ(z + ψs(x0) −Xs)

]〉
νs(dz)

= 2

∫ ∫ 〈
z,Φ(z − y)

〉
νs(dy) νs(dz)

=

∫ ∫ 〈
z − y,Φ(z − y)

〉
νs(dy) νs(dz) ≥ 0.Hen
e by the growth 
ondition (2.7) for V

IE ‖Zt‖2 ≤ 2

∫ t

0

IE
〈
Zs, V (Zs + ψs(x0)) − V (ψs(x0))

〉
ds+ εtd

≤ 2K

∫ t

0

IE ‖Zs‖2
ds+ εtd,and Gronwall's lemma yields

IE ‖Zt‖2 ≤ εtd e2Kt.This is the 
laimed bound. For the Lp-
onvergen
e observe that this bound is independent of the initial
ondition x0. Moreover, the argument of Proposition 2.11 shows that sup
{

IE
(
‖Xt‖p )

: 0 ≤ t ≤
T, x0 ∈ L, 0 < ε < ε0

}
< ∞ holds for 
ompa
t sets L and ε0 > 0. This implies that Z is boundedin Lp(IP⊗λ[0,T ]) as ε → 0, uniformly w.r.t. x0 ∈ L. Now the Lp-
onvergen
e follows from the Vitali
onvergen
e theorem.3.2 Corollary. For any T > 0 we have

lim
ε→0

bε,x0(t, x) = Φ(x− ψt(x0)),uniformly w.r.t. t ∈ [0, T ] and w.r.t. x and x0 on 
ompa
t subsets of IRd.Proof. The growth 
ondition on Φ and the Cau
hy-S
hwarz inequality yield
∥∥bε(t, x) − Φ(x− ψt(x0))

∥∥2 ≤ IE
[
‖Xt − ψt(x0)‖

(
K + ‖x−Xt‖r

+ ‖x− ψt(x0)‖r
)]2

≤ IE
[
‖Xt − ψt(x0)‖2

]
IE

[(
K + ‖x−Xt‖r

+ ‖x− ψt(x0)‖r
)2]

.The �rst expe
tation on the r.h.s. of this inequality tends to zero by Lemma 3.1. Sin
e X is bounded in
L2r(IP), uniformly w.r.t. x0 on 
ompa
t sets, the 
laimed 
onvergen
e follows.16



In a next step we repla
e the di�usion's law in (3.1) by its limit, the Dira
 measure in ψt(x0). Beforedoing so, let us introdu
e a slight generalization of X .Theorem 2.12 implies that X is a time inhomogeneous Markov pro
ess. The di�usion X , starting attime s ≥ 0, is given as the unique solution of the sto
hasti
 integral equation
Xt = Xs +

∫ t

s

[V (Xu) − bε,x0(u,Xu)] du+
√
ε(Wt −Ws), t ≥ s.By shifting the starting time ba
k to the origin, this equation translates into

Xt+s = Xs +

∫ t

0

[V (Xu+s) − bε,x0(u+ s,Xu+s)] du +
√
εW s

t , t ≥ 0,where W s is the Brownian motion given by W s
t = Wt+s −Ws, whi
h is independent of Xs. Sin
e we aremainly interested in the law of X , we may repla
e W s by W .For an initial 
ondition ξ0 ∈ IRd and s ≥ 0, we denote by ξs,ξ0 the unique solution of the equation

ξt = ξ0 +

∫ t

0

V (ξu) − bε,x0(u+ s, ξu) du+
√
εWt, t ≥ 0. (3.3)Note that ξ0,x0 = X , and that ξs,ξ0 has the same law as Xt+s, given that Xs = ξ0. The interpretationof bε,x0 as an intera
tion drift is lost in this equation, sin
e bε,x0 does not depend on ξs,ξ0 .Now re
all that bε,x0(t, x) = IE

{
Φ(x − Xε

t )
}, whi
h tends to Φ(x − ψt(x0)) by Corollary 3.2. Thismotivates the de�nition of the following analogue of ξs,ξ0 , in whi
h uε

t is repla
ed by the Dira
 measurein ψt(x0). We denote by Y s,y the solution of the equation
Yt = y +

∫ t

0

V (Yu) − Φ(Yu − ψt+s(x0)) du+
√
εWt, t ≥ 0. (3.4)This equation is an SDE in the 
lassi
al sense, and it admits a unique strong solution by Proposition 2.5.Furthermore, it is known that Y s,y satis�es a large deviations prin
iple in the spa
e C0T = {f : [0, T ] →

IRd | f is 
ontinuous}, equipped with the topology of uniform 
onvergen
e. This LDP des
ribes thedeviations of Y s,y from the deterministi
 system ϕ̇t = V (ϕt) − Φ(ϕt − ψt+s(x0)) with ϕ0 = y. Observethat ϕ 
oin
ides with ψ(x0) in 
ase y = x0, and that non-explosion of ϕ is ensured by the dissipativityproperties of V and Φ as follows. By (2.4) we have
d

dt
‖ϕt − ψt+s‖2

= 2
〈
ϕt − ψt+s, ϕ̇t − ψ̇t+s

〉
= 2

〈
ϕt − ψt+s, V (ϕt) − Φ(ϕt − ψt+s) − V (ψt+s)

〉

≤ 2
〈
ϕt − ψt+s, V (ϕt) − V (ψt+s)

〉
. (3.5)Sin
e the last expression is negative for large values of ‖ϕt − ψt+s‖ by (2.8), this means that ϕt − ψt+sis bounded. But ψ is bounded, so ϕ is also bounded.Let ρ0T (f, g) := sup0≤t≤T ‖f − g‖ (f, g ∈ C0T ) be the metri
 
orresponding to uniform topology, anddenote by H1

y the Cameron-Martin spa
e of absolutely 
ontinuous fun
tions starting in y that possesssquare integrable derivatives.3.3 Proposition. The family (Y s,y) satis�es a large deviations prin
iple with good rate fun
tion
Is,y
0T (ϕ) =

{
1
2

∫ T

0
‖ϕ̇t − V (ϕt) + Φ(ϕt − ψt+s(x0))‖2

dt, if ϕ ∈ H1
y ,

∞, otherwise . (3.6)More pre
isely, for any 
losed set F ⊂ C0T we have
lim sup

ε→0
ε log IP(Y s,y ∈ F ) ≤ − inf

φ∈F
Is,y
0T (φ),and for any open set G ⊂ C0T

lim inf
ε→0

ε log IP(Y s,y ∈ G) ≥ − inf
φ∈G

Is,y
0T (φ).17



Proof. Let a(t, y) := V (y)− Φ(y− ψt), and denote by F the fun
tion that maps a path g ∈ C0T to thesolution f of the ODE
ft = x0 +

∫ t

0

a(s, fs) ds+ gt, 0 ≤ t ≤ T.Fix g ∈ C0T , and let R > 0 su
h that the deterministi
 traje
tory ψ(x0) as well as f = F (g) stay in
BR(0) up to time T . Note that non-explosion of f is guaranteed by dissipativity of a, mu
h like in (3.5).Now observe that a is lo
ally Lips
hitz with 
onstant 2K2R on BR(0), uniformly w.r.t. t ∈ [0, T ]. Thus,we have for g̃ ∈ C0T , f̃ = F (g̃) su
h thatf̃ does not leave BR(0) up to time T

‖ft − f̃t‖ ≤ 2K2R

∫ t

0

‖fs − f̃s‖ ds+ ‖gt − g̃t‖ ,and Gronwalls's lemma yields
ρ0T (f, f̃) ≤ ρ0T (g, g̃) e2K2RT ,i.e. F is 
ontinuous. Indeed, the last inequality shows that we do not have to presume that f̃ stays in

BR(0), but that this is granted whenever ρ0T (g, g̃) is su�
iently small.Sin
e F is 
ontinuous and F (
√
εW ) = Y , we may invoke S
hilder's theorem and the 
ontra
tion prin
iple,to dedu
e that Y satis�es a large deviations prin
iple with rate fun
tion

I0T (ϕ) = inf
{1

2

∫ T

0

‖ġt‖2
dt : g ∈ H1

y , F (g) = ϕ
}
.This proves the LDP for (Y s,y).Noti
e that the rate fun
tion of Y measures distan
es from the deterministi
 solution ψ just as in the
lassi
al 
ase without intera
tion, but the distan
e of ϕ from ψ is weighted by the intera
tion betweenthe two paths.By means of the rate fun
tion, one 
an asso
iate to Y s,y two fun
tions that determine the 
ost resp.energy of moving between points in the geometri
 lands
ape indu
ed by the ve
tor �eld V . For t ≥ 0the 
ost fun
tion

Cs(y, z, t) = inf
f∈C0t: ft=z

Is,y
0t (f), y, z ∈ IRddetermines the asymptoti
 
ost for the di�usion Y s,y to move from y to z in time t, and the quasi-potential

Qs(y, z) = inf
t>0

Cs(y, z, t)des
ribes its 
ost of going from y to z eventually.3.2 Large deviations prin
iple for the self-stabilizing di�usionWe are now in a position to prove large deviations prin
iples for ξ and X by showing that ξ and Y are
lose in the sense of large deviations.3.4 Theorem. For any ε > 0 let xε
0, ξ

ε
0 ∈ IRd that 
onverge to some x0 ∈ IRd resp. y ∈ IRd as ε → 0.Denote by Xε the solution of (3.1) starting at xε

0. Let s ≥ 0, and denote by ξε the solution of (3.3)starting in ξε
0 with time parameter s, i.e.

ξε
t = ξε

0 +

∫ t

0

V (ξε
u) − bε,x0(u+ s, ξε

u) du+
√
εWt, t ≥ 0, (3.7)where bε,x0(t, x) = IE[Φ(x−Xε

t )].Then the di�usions (ξε)ε>0 satisfy on any time interval [0, T ] a large deviations prin
iple with good ratefun
tion (3.6). 18



Proof. We shall show that ξ := ξε is exponentially equivalent to Y := Y s,y as de�ned by (3.4), whi
hhas the desired rate fun
tion, i.e. we prove that for any δ > 0 we have
lim sup

ε→0
ε log IP(ρ0T (ξ, Y ) ≥ δ) = −∞. (3.8)Without loss of generality, we may 
hoose R > 0 su
h that xε

0, y ∈ BR(0) and that ψt(x0) does not leave
BR(0) up to time s + T , and denote by σR the �rst time at whi
h ξ or Y exit from BR(0). Then for
t ≤ σR

‖ξt − Yt‖ ≤ ‖ξ0 − y‖ +

∫ t

0

‖V (ξu) − V (Yu)‖ du+

∫ t

0

∥∥∥bε,xε
0(u + s, ξu) − Φ(Yu − ψu+s(x0))

∥∥∥ du (3.9)The �rst integral satis�es
∫ t

0

‖V (ξu) − V (Yu)‖ du ≤ KR

∫ t

0

‖ξu − Yu‖ du, t ≤ σR,due to the lo
al Lips
hitz assumption. Let us de
ompose the se
ond integral. We have
∥∥∥bε,xε

0(u + s, ξu) − Φ(Yu − ψu+s(x0))
∥∥∥ ≤

∥∥∥bε,xε
0(u+ s, ξu) − Φ(ξu − ψu+s(x

ε
0))

∥∥∥

+ ‖Φ(ξu − ψu+s(x
ε
0)) − Φ(ξu − ψu+s(x0))‖

+ ‖Φ(ξu − ψu+s(x0)) − Φ(Yu − ψu+s(x0))‖ .Bounds for the se
ond and third term in this de
omposition are easily derived. The last one is seen tobe bounded by K2R ‖ξu − Yu‖, sin
e ξ, Y as well as ψ are in BR(0) before time σR ∧ T . For the se
ondterm we also use the Lips
hitz 
ondition to dedu
e that
‖Φ(ξu − ψu+s(x

ε
0)) − Φ(ξu − ψu+s(x0))‖ ≤ K2R ‖ψu+s(x

ε
0) − ψu+s(x0)‖ .As a 
onsequen
e of the �ow property for ψ this bound approa
hes 0 as ε→ 0 uniformly w.r.t. u ∈ [0, T ].By 
ombining these bounds and applying Gronwall's lemma, we �nd that

‖ξt − Yt‖ ≤ exp
{
2K2Rt

}(
‖ξ0 − y‖ +K2R

∫ t

0

‖ψu+s(x
ε
0) − ψu+s(x0)‖ du

+

∫ t

0

∥∥∥bε,xε
0(u+ s, ξu) − Φ(ξu − ψu+s(x

ε
0))

∥∥∥ du
) (3.10)for t ≤ σR. Sin
e ξ is bounded before σR the r.h.s. of this inequality tends to zero by Corollary 3.2.The exponential equivalen
e follows from the LDP for Y as follows. Fix δ > 0, and 
hoose ε0 > 0 su
hthat the r.h.s. of (3.10) is smaller than δ for ε ≤ ε0. Then ‖ξt − Yt‖ > δ implies that at least one of ξtor Yt is not in BR(0), and if ξt /∈ BR(0) then Yt /∈ BR/2(0) if δ is small enough. Thus we 
an bound thedistan
e of ξ and Y by an exit probability of Y . For l > 0 let τl denote the di�usion Y 's time of �rstexit from Bl(0). Then, by Proposition 3.3,

lim sup
ε→0

ε log IP
(
ρ0T (ξ, Y ) > δ

)
≤ lim sup

ε→0
ε log IP(τR/2 ≤ T )

≤ − inf
{
Cs(y, z, t) : |z| ≥ R

2 , 0 ≤ t ≤ T
}
. (3.11)The latter expression approa
hes −∞ as R → ∞.Theorem 3.4 allows us to dedu
e two important 
orollaries. A parti
ular 
hoi
e of parameters yields anLDP for X , and the ε-dependen
e of the initial 
onditions permits us to 
on
lude that the LDP holdsuniformly on 
ompa
t subsets, a fa
t that is 
ru
ial for the proof of an exit law in the following se
tion.The arguments 
an be found in [7℄.Let IPx0

(X ∈ ·) denote the law of the di�usion X starting at x0 ∈ IRd.19



3.5 Corollary. Let L ⊂ IRd be a 
ompa
t set.For any 
losed set F ⊂ C0T we have
lim sup

ε→0
ε log sup

x0∈L
IPx0

(X ∈ F ) ≤ − inf
x0∈L

inf
φ∈F

I0,x0

0T (φ),and for any open set G ⊂ C0T

lim inf
ε→0

ε log inf
x0∈L

IPx0
(X ∈ G) ≥ − sup

x0∈L
inf
φ∈G

I0,x0

0T (φ).Proof. Choosing xε
0 = ξε

0 and s = 0 implies ξε = Xε in Theorem 3.4, whi
h shows that X satis�es anLDP with rate fun
tion I0,x0

0T . Furthermore, this LDP allows for ε-dependent initial 
onditions. Thisimplies the uniformity of the LDP, as pointed out in the proofs of Theorem 5.6.12 and Corollary 5.6.15in [7℄. Indeed, the ε-dependen
e yields for all x0 ∈ IRd

lim sup
ε→0,y→x0

ε log IPy(X ∈ F ) ≤ − inf
φ∈F

I0,x0

0T (φ),for otherwise one 
ould �nd sequen
es εn > 0 and yn ∈ IRd su
h that εn → 0, yn → x0 and
lim sup

n→∞
εn log IPyn

(X ∈ F ) > − inf
φ∈F

I0,x0

0T (φ).But this 
ontradi
ts the LDP.Now the uniformity of the upper large deviations bound follows exa
tly as demonstrated in the proof ofCorollary 5.6.15 in [7℄. The lower bound is treated similarly.The next 
orollary is just a 
onsequen
e of the ε-dependent initial 
onditions in the LDP for ξ.3.6 Corollary. Let L ⊂ IRd be a 
ompa
t set.For any 
losed set F ⊂ C0T we have
lim sup

ε→0
ε log sup

x0∈L
IP(ξs,x0 ∈ F ) ≤ − inf

x0∈L
inf
φ∈F

Is,x0

0T (φ),and for any open set G ⊂ C0T

lim inf
ε→0

ε log inf
x0∈L

IP(ξs,x0 ∈ G) ≥ − sup
x0∈L

inf
φ∈G

Is,x0

0T (φ).3.3 Exponential approximations under stability assumptionsThe aim of this subse
tion is to exploit the fa
t that the inhomogeneity of the di�usion Y s,y is weakin the sense that its drift depends on time only through ψt+s(x0). If the dynami
al system ψ̇ = V (ψ)admits an asymptoti
ally stable �xed point xstable that attra
ts x0, then the drift of Y s,y be
omes almostautonomous for large times, whi
h in turn may be used to estimate large deviations probabilities for
ξs,y. We make the following assumption. It will also be in for
e in Se
tion 4, where it will keep us fromformulating results on exits from domains with boundaries 
ontaining 
riti
al points of DV , in parti
ularsaddle points in the potential 
ase.3.7 Assumption.i) Stability: there exists a stable equilibrium point xstable ∈ IRd of the dynami
al system

ψ̇ = V (ψ).20



ii) Convexity: the geometry indu
ed by the ve
tor �eld V is 
onvex, i.e. the 
ondition (2.6) for Vholds globally:
〈h,DV (x)h〉 ≤ −KV (3.12)for h ∈ IRd s.t. ‖h‖ = 1 and x ∈ IRd.Under this assumption it is natural to 
onsider the limiting time homogeneous di�usion Y∞,y de�ned by

dY∞
t = V (Y∞

t )dt− Φ(Y∞
t − xstable)dt+

√
εdWt, Y∞

0 = y. (3.13)3.8 Lemma. Let L ⊂ IRd be 
ompa
t, and assume that xstable attra
ts all y ∈ L, i.e.
lim

t→∞
ψt(y) = xstable ∀y ∈ L.Then Y∞,y is an exponentially good approximation of Y s,y, i.e. for any δ > 0 we have

lim
r→∞

lim sup
ε→0

ε log sup
y∈L, s≥r

IP(ρ0T (Y s,y, Y∞,y) ≥ δ) = −∞.Proof. We have
‖Y s, y

t − Y∞,y
t ‖ ≤

∫ t

0

‖V (Y s, y
u ) − V (Y∞,y

u )‖du+

∫ t

0

‖Φ(Y s, y
u − ψs+u(y)) − Φ(Y∞,y

u − xstable)‖du.Let σs,y
R be the �rst time at whi
h Y s,y or Y∞,y exits from BR(0). For t ≤ σs,y

R , we may use the Lips
hitzproperty of Φ and V , to �nd a 
onstant cR > 0 s.t.
‖Y s, y

t − Y∞
t ‖ ≤ cR

∫ t

0

‖Y s, y
u − Y∞

u ‖du+ cRTρ0T (ψs+·(y), xstable).By assumption the se
ond term 
onverges to 0 as s→ ∞, uniformly with respe
t to y ∈ L sin
e the �ow is
ontinuous with respe
t to the initial data. Hen
e, by Gronwall's lemma there exists some r = r(R, δ) > 0su
h that for s ≥ r

sup
y∈L

sup
0≤t≤σs,y

R

‖Y s, y
t − Y∞

t ‖ < δ/2.We dedu
e that
IP(ρ0T (Y s, y, Y∞) ≥ δ/2) ≤ IP(τy

R/2 ≤ T ) ∀s ≥ r, y ∈ L,where for l > 0 τy
l denotes the �rst exit time of Y∞,y from Bl(0). Sending r,R → ∞ and appealing tothe uniform LDP for Y∞,y �nishes the proof, mu
h as the proof of Theorem 3.4.This exponential 
loseness of Y∞,y and Y s,y 
arries over to ξs,y under the aforementioned stability and
onvexity assumption, whi
h enables us to sharpen the exponential equivalen
e proved in Theorem 3.4.In order to establish this improvement, we need a preparatory lemma that strengthens Corollary 3.2 touniform 
onvergen
e over the whole time axis. This uniformity is of 
ru
ial importan
e for the proof ofan exit law in the next se
tion and depends substantially on the strong 
onvexity assumption (3.12).3.9 Lemma. We have

lim
ε→0

bε,x0(t, x) = Φ(x− ψt(x0)),uniformly w.r.t. t ≥ 0 and w.r.t. x and x0 on 
ompa
t subsets of IRd.Proof. Let f(t) := IE(‖Zt‖2), where Zt = Xt − ψt(x0). In the proof of Lemma 3.1 we have seen that
f ′(t) ≤ 2 IE

[〈
Zt, V (Zt + ψt(x0)) − V (ψt(x0))

〉]
+ εd ≤ −2KV IE(‖Zt‖2

) + εd = −2KV f(t) + εd.This means that {t ≥ 0 : f ′(t) < 0} ⊃ {t ≥ 0 : f(t) > εd
2KV

}. Re
alling that f(0) = 0, this allowsus to 
on
lude that f is bounded by εd
2KV

. Now an appeal to the proof of Corollary 3.2 �nishes theargument. 21



3.10 Proposition. Let L ⊂ IRd be 
ompa
t, and assume that xstable attra
ts all y ∈ L. Then Y∞,y isan exponentially good approximation of ξs,y, i.e. for any δ > 0 we have
lim

r→∞
lim sup

ε→0
ε log sup

y∈L, s≥r
IP(ρ0T (ξs,y, Y∞,y) ≥ δ) = −∞.Proof. Re
all the proof of Theorem 3.4. For y ∈ L and s ≥ 0 we have

‖ξs,y
t − Y s,y

t ‖ ≤ exp
{
2K2Rt

}∫ t

0

‖bε,x0(u+ s, ξu) − Φ(ξu − ψu+s(x0))‖ du (3.14)for t ≤ σy,s
R , whi
h denotes the �rst time that ξs,y

t or Y s,y exits from BR(0). By Lemma 3.9, the integrandon the r.h.s. 
onverges to zero as ε → 0, uniformly w.r.t. s ≥ 0. Therefore, if we �x δ > 0, we may
hoose R = R(δ) su�
iently large and ε0 > 0 su
h that for ε ≤ ε0, and all s ≥ 0

IP(ρ0T (ξs,y , Y s,y) > δ) ≤ IP(τs,y
R/2 < T ) ≤ IP(τ∞,y

R/4 < T ) + IP(ρ0T (Y∞,y, Y s,y) > R/4),where for l > 0, 0 ≤ s ≤ ∞ τs,y
l denotes the �rst exit time of the di�usion Y s,y from the ball Bl(0). Bythe uniform LDP for Y∞,y and Lemma 3.8 the assertion follows.4 The exit problemAs a 
onsequen
e of the large deviations prin
iple, the traje
tories of the self-stabilizing di�usion areattra
ted to the deterministi
 dynami
al system ψ̇ = V (ψ) as noise tends to 0. The probabilities ofdeviating from ψ are exponentially small in ε, and the di�usion will 
ertainly exit from a domain withina 
ertain time interval if the deterministi
 path ψ exits. The problem of di�usion exit involves an analysisfor the rare event that the di�usion leaves the domain although the deterministi
 path stays inside, i.e.it is 
on
erned with an exit whi
h is triggered by noise only. Clearly, the time of su
h an exit shouldin
rease as the noise intensity tends to zero. In this se
tion we shall derive the pre
ise large deviationsasymptoti
s of su
h exit times, i.e. we shall give an analogue of the well known Kramers-Eyring law fortime homogeneous di�usions.Let us brie�y re
all this law, a detailed presentation of whi
h may be found in se
tion 5.7 of [7℄. Forfurther 
lassi
al results about the exit problem we refer to [8℄, [5℄, [6℄ and [17℄.A Brownian parti
le of intensity ε that wanders in a geometri
 lands
ape given by a potential U ismathemati
ally des
ribed by the 
lassi
al time-homogeneous SDE
dZε

t = −∇U(Zε
t )dt+

√
εdWt, Zε

0 = x0 ∈ IRd .If x∗ is a stable �xed point of the system ẋ = −∇U(x) that attra
ts the initial 
ondition x0 and τεdenotes the exit time from the domain of attra
tion of x∗, then the asymptoti
s of τε is des
ribed by thefollowing two relations:
lim
ε→0

ε log IE(τε) = Ū , (4.1)
lim
ε→0

IP
(
e(Ū−δ)/ε < τε < e(Ū+δ)/ε

)
= 1 ∀δ > 0. (4.2)Here Ū denotes the energy required to exit from the domain of attra
tion of x∗. This law may roughlybe paraphrased by saying that τε behaves like exp Ū

ε as ε→ 0.Let us now return to the self-stabilizing di�usion Xε, de�ned by (3.1). Intuitively, exit times shouldin
rease 
ompared to the 
lassi
al 
ase due to self-stabilization and the inertia it entails. We shall showthat this is indeed the 
ase, and prove a synonym of (4.1) and (4.2) for the self-stabilizing di�usion. Ourapproa
h follows the presentation in [7℄. 22



Let D be an open bounded domain in IRd in whi
h Xε starts, i.e. x0 ∈ D, and denote by
τε
D = inf{t > 0 : Xε

t ∈ ∂D}the �rst exit time from D. We make the following stability assumptions about D.4.1 Assumption.i) The unique equilibrium point in D of the dynami
al system
ψ̇t = V (ψt) (4.3)is stable and given by xstable ∈ D. As before, ψt(x0) denotes the solution starting in x0. We assumethat limt→∞ ψt(x0) = xstable.ii) The solutions of

φ̇t = V (φt) − Φ(φt − xstable) (4.4)satisfy
φ0 ∈ D =⇒ φt ∈ D ∀t > 0 and lim

t→∞
φt = xstable,and all traje
tories starting at the boundary ∂D 
onverge to the stable point xstable.Observe that for x0 ∈ D, ψt(x0) stays in the domain D at all times sin
e it satis�es (4.4).The des
ription of the exponential rate for the exit time of It� di�usions with homogeneous 
oe�
ientswas �rst proved by Freidlin and Wentzell via an exploitation of the strong Markov property. The self-stabilizing di�usion Xε is also Markovian, but it is inhomogeneous, whi
h makes a dire
t appli
ation ofthe Markov property di�
ult. However, the inhomogeneity is weak under the stability Assumption 4.1.It implies that the law of Xε

t 
onverges as time tends to in�nity, and large deviations probabilites for
Xε may be approximated by those of Y∞ in the sense of Proposition 3.10. Sin
e Y∞ is de�ned in termsof an autonomous SDE, its exit behavior is a

essible through 
lassi
al results. The rate fun
tion thatdes
ribes the LDP for Y∞ is given by

I∞,y
0T (ϕ) =

{
1
2

∫ T

0
‖ϕ̇t − V (ϕt) + Φ(ϕt − xstable)‖2

dt, if ϕ ∈ H1
y ,

∞, otherwise . (4.5)The 
orresponding 
ost fun
tion and quasi potential are de�ned in an obvious way and denoted by C∞and Q∞, respe
tively. The minimal energy required to 
onne
t the stable equilibrium point xstable to theboundary of the domain is assumed to be �nite, i.e.
Q∞ := inf

z∈∂D
Q∞(xstable, z) <∞.The following two theorems state our main result about the exponential rate of the exit time and theexit lo
ation.4.1 Theorem. For all x0 ∈ D and all η > 0, we have

lim sup
ε→0

ε log
{
1 − IPx0

(e(Q∞
−η)/ε < τε

D < e(Q∞
+η)/ε)

}
≤ −η/2, (4.6)and

lim
ε→0

ε log IEx0
(τε

D) = Q∞. (4.7)4.2 Theorem. If N ⊂ ∂D is a 
losed set satisfying infz∈N Q∞(xstable, z) > Q∞, then it does not see theexit point: for any x0 ∈ D

lim
ε→0

IPx0
(Xε

τD
∈ N) = 0.The rest of this se
tion is devoted to the proof of these two theorems. In the subsequent se
tion, theseresults are illustrated by examples whi
h show that the attra
tion part of the drift term in a di�usionmay 
ompletely 
hange the behavior of the paths, i.e. the self-stabilizing di�usion stays in the domainfor a longer time than the 
lassi
al one, and it typi
ally exits at a di�erent pla
e.23



4.1 Enlargement of the domainThe self-stabilizing di�usion lives in the open, bounded domain D whi
h is assumed to ful�ll the pre-viously stated stability 
onditions. In order to derive upper and lower bounds of exit probabilities, weneed to 
onstru
t an enlargement of D that still enjoys the stability properties of Assumption 4.1 ii).This is possible be
ause the family of solutions to the dynami
al system (4.4) de�nes a 
ontinuous �ow.For δ > 0 we denote by Dδ := {y ∈ IRd : dist(y,D) < δ} the open δ-neighborhood of D. The �ow φis 
ontinuous, hen
e uniformly 
ontinuous on D due to boundedness of D, and sin
e the ve
tor �eld islo
ally Lips
hitz. Hen
e, if δ is small enough, the traje
tories φt(y) 
onverge to xstable for y ∈ Dδ, i.e.for ea
h neighborhood V ⊂ D of xstable there exists some T > 0 su
h that for y ∈ Dδ we have φt(y) ∈ Vfor all t ≥ T . Moreover, the joint 
ontinuity of the �ow implies that, if we �x c > 0, we may 
hoose
δ = δ(c) > 0 su
h that

sup
{

dist(φt(y), D) : t ∈ [0, T ], y ∈ Dδ
}
< c.Let

Oδ =
{
y ∈ IRd : sup

t∈[0,T ]

dist(φt(y), D) < c, φT (y) ∈ V
}
.Then Oδ is a bounded open set whi
h 
ontains Dδ and satis�es Assumption 4.1 ii). Indeed, if δ is smallenough, the boundary of Oδ is not a 
hara
teristi
 boundary, and ∩δ>0Oδ = D.4.2 Proof of the upper bound for the exit timeFor the proof of the two main results, we su

essively pro
eed in several steps and establish a seriesof preparatory estimates that shall be 
ombined afterwards. In this subse
tion, we 
on
entrate on theupper bound for the exit time from D, and establish inequalities for the probability of ex
eeding thisbound and for the mean exit time.In the sequel, we denote by IPs, y the law of the di�usion ξs, y, de�ned by (3.3). Re
all that by theresults of the previous se
tion, ξs, y satis�es a large deviations prin
iple with rate fun
tion Is,y. Thefollowing 
ontinuity property of the asso
iated 
ost fun
tion is the analogue of Lemma 5.7.8 in [7℄ forthis inhomogeneous di�usion. The proof is omitted.4.3 Lemma. For any δ > 0 and s ∈ [0,∞), there exists ̺ > 0 su
h that

sup
x,y∈B̺(xstable)

inf
t∈[0,1]

Cs(x, y, t) < δ (4.8)and
sup

(x,y)∈Γ

inf
t∈[0,1]

Cs(x, y, t) < δ, (4.9)where Γ = {(x, y) : infz∈∂D(‖y − z‖ + ‖x− z‖) ≤ ̺}.Let us now present two preliminary lemmas on exit times of ξs, y. In slight abuse of notation, we denoteexit times of ξs, y also by τε
D, whi
h 
ould formally be justi�ed by assuming to look solely at the 
oordinatepro
ess on path spa
e and swit
hing between measures instead of pro
esses. On the other hand, thisnotation is 
onvenient when having in mind that ξs, y des
ribes the law of Xε restarted at time s, andthat Xε may be re
overed from ξs, y for 
ertain parameters.4.4 Lemma. For any η > 0 and ̺ > 0 small enough, there exist T0 > 0, s0 > 0 and ε0 > 0 su
h that

inf
y∈B̺(xstable)

IPs, y(τε
D ≤ T0) ≥ e−(Q

∞
+η)/ε for all ε ≤ ε0 and s ≥ s0.24



Proof. Let ̺ be given a

ording to Lemma 4.3. The 
orresponding result for the time homogeneousdi�usion Y∞,y is well known (see [7℄, Lemma 5.7.18), and will be 
arried over to ξs, y using the exponentialapproximation of Proposition 3.10. Let IP∞, y denote the law of Y∞,y. The drift of Y∞,y is lo
allyLips
hitz by the assumptions on V and Φ, and we may assume w.l.o.g. that it is even globally Lips
hitz.Otherwise we 
hange the drift outside a large domain 
ontaining D.If δ > 0 is small enough su
h that the enlarged domain Oδ satis�es Assumption 4.1 ii), Lemma 5.7.18 in[7℄ implies the existen
e of ε1 and T0 su
h that
inf

y∈B̺(xstable)
IP∞, y(τε

Oδ ≤ T0) ≥ e−(Q
δ

∞
+η/3)/ε for all ε ≤ ε1. (4.10)Here Q δ

∞ denotes the minimal energy
Q

δ

∞ = inf
z∈∂Oδ

Q∞(xstable, z).The 
ontinuity of the 
ost fun
tion 
arries over to the quasi-potential, i.e. there exists some δ0 > 0 su
hthat |Q δ

∞ −Q∞| ≤ η/3 for δ ≤ δ0.Now let us link the exit probabilities of Y∞,y and ξs, y. We have for s ≥ 0

IPs, y(τ
ε
D ≤ T0) ≥ IP({ξs, y exits from D before T0} ∩ {ρ0,T0

(ξs, y, Y∞,y) ≤ δ})
≥ IP∞, y(τε

Dδ ≤ T0) − IP(ρ0,T0
(ξs, y, Y∞) ≥ δ). (4.11)Moreover, by the exponential approximation we may �nd ε2 > 0 and s0 > 0 su
h that

sup
y∈B̺(xstable)

IP(ρ0,T0
(ξs, y, Y∞) ≥ δ) ≤ e−(Q

δ

∞
+η/2)/ε ∀s ≥ s0, ε ≤ ε2.Sin
e Dδ ⊂ Oδ, we dedu
e that for ε ≤ ε0 = ε1 ∧ ε2 and s ≥ s0

inf
y∈B̺(xstable)

IPs, y(τε
D ≤ T0) ≥ e−(Q

δ

∞
+η/3)/ε − e−(Q

δ

∞
+η/2)/ε ≥ e−(Q

δ

∞
+η)/ε.By similar arguments, we prove the exponential smallness of the probability of too long exit times. Let

Σ̺ = inf{t ≥ 0 : ξs, y
t ∈ B̺(xstable) ∪ ∂D}, where ̺ is small enough su
h that B̺(xstable) is 
ontained inthe domain D.4.5 Lemma. For any ̺ > 0 and K > 0 there exist ε0 > 0, T1 > 0 and r > 0 su
h that

sup
y∈D, s≥r

IPs, y(Σ̺ > t) ≤ e−K/ε ∀t ≥ T1.Proof. As before, we use the fa
t that a similar result is already known for Y∞,y. For δ > 0 smallenough, let
Σδ

̺ = inf{t ≥ 0 : Y∞
t ∈ B̺−δ(xstable) ∪ ∂Oδ}.By Lemma 5.7.19 in [7℄, there exist T1 > 0 and ε1 > 0 su
h that

sup
y∈D

IP∞, y(Σδ
̺ > t) ≤ e−K/ε ∀t ≥ T1 ε ≤ ε1.Now the assertion follows from

sup
y∈D

IPs, y(Σ̺ > T1) ≤ sup
y∈D

IP∞, y(Σδ
̺ > T1) + sup

y∈D
IP(ρ0,T1

(ξs, y, Y∞,y) > δ),sin
e the last term is exponentially negligible by Proposition 3.10.25



The previous two lemmas 
ontain the essential large deviations bounds required for the proof of thefollowing upper bound for the exit time of Xε.4.6 Proposition. For all x0 ∈ D and η > 0 we have
lim sup

ε→0
ε log IPx0

(
τε
D ≥ e(Q∞

+η)/ε
)

≤ −η/2, (4.12)and
lim sup

ε→0
ε log IEx0

[
τε
D

]
≤ Q∞. (4.13)Proof. The proof 
onsists of a 
areful modi�
ation of the arguments used in Theorem 5.7.11 in [7℄. ByLemma 4.4 and Lemma 4.5, there exist T̃ = T0 + T1 > 0, ε0 > 0 and r0 > 0 su
h that for T ≥ T̃ , ε ≤ ε0and r ≥ r0 we have

qr
T := inf

y∈D
IPr, y(τε

D ≤ T ) ≥ inf
y∈D

IPr, y

(
Σ̺ ≤ T1

)
inf

y∈B̺(xstable), s≥r
IPs, y

(
τε
D ≤ T0

) (4.14)
≥ exp

{
− Q∞ + η/2

ε

}
=: q∞T .Moreover, by the Markov property of ξs, y, we see that for k ∈ IN

IPx0

(
τε
D > 2(k + 1)T

)
=

[
1 − IPx0

(
τε
D ≤ 2(k + 1)T | τε

D > 2kT
)]

IPx0

(
τε
D > 2kT

)

≤
[
1 − inf

y∈D
IP2kT,y

(
τε
D ≤ 2T

)]
IPx0

(
τε
D > 2kT

)

≤
(
1 − q2kT

2T

)
IPx0

(
τε
D > 2kT

)
,whi
h by indu
tion yields

IPx0

(
τε
D > 2kT

)
≤

k−1∏

i=0

(
1 − q2iT

2T

)
. (4.15)Let us estimate ea
h term of the produ
t separately. We have

1 − q2iT
2T = sup

y∈D
IP2iT,y

(
τε
D > 2T

)
≤ sup

y∈D
IP2iT,y

(
τε
D > T

)
sup
y∈D

IP(2i+1)T,y

(
τε
D > T

)

≤ sup
y∈D

IP(2i+1)T,y

(
τε
D > T

)
.By 
hoosing T large enough, we may repla
e the produ
t in (4.15) by a power. Indeed, for T > max(T̃ , r0)we have (2i+ 1)T ≥ r0 for all i ∈ IN, whi
h by (4.14) results in the uniform upper bound

1 − q2iT
2T ≤ 1 − q

(2i+1)T
T ≤ 1 − q∞T .By plugging this into (4.15), we obtain a �geometri
� upper bound for the expe
ted exit time, namely

IEx0

[
τε
D

]
≤ 2T

[
1 +

∞∑

k=1

sup
y∈D

IPx0

(
τε
D ≥ 2kT

)
]

≤ 2T

[
1 +

∞∑

k=1

k−1∏

i=0

(
1 − q2iT

2T

)
]

≤ 2T

[
1 +

∞∑

k=1

(
1 − q∞T

)k

]
=

2T

q∞T
.This proves the 
laimed asymptoti
s of the expe
ted exit time. Furthermore, an appli
ation of Cheby-
hev's inequality shows that

IPx0

(
τε
D ≥ e(Q∞

+η)/ε
)

≤ IEx0

[
τε
D

]

e(Q∞
+η)/ε

≤ 2T
e−(Q

∞
+η)/ε

q∞T
= 2T e−η/2ε,whi
h is the asserted upper bound of the exit probability.26



4.3 Proof of the lower bound for the exit timeIn order to establish the lower bound of the exit time, we prove a preliminary lemma whi
h estimatesthe probability to exit from the domain D \B̺(xstable) at the boundary of D. This probability is seen tobe exponentially small sin
e the di�usion is attra
ted to the stable equilibrium point. Let us denote by
S̺ the boundary of B̺(xstable), and re
all the de�nition of the stopping time Σ̺.4.7 Lemma. For any 
losed set N ⊂ ∂D and η > 0, there exist ε0 > 0, ̺0 > 0 and r0 > 0 su
h that

ε log sup
y∈S2̺, s≥r

IP
(
ξs, y
Σ̺

∈ N
)

≤ − inf
z∈N

Q∞(xstable, z) + ηfor all ε ≤ ε0, r ≥ r0 and ̺ ≤ ̺0.Proof. For δ > 0 we de�ne a subset Sδ of Dδ by setting
Sδ := Dδ \ {y ∈ IRd : dist(y,N) < δ}.

PSfrag repla
ementsN
Sδ

∂D

Furthermore, let
N δ := ∂Sδ ∩ {y ∈ IRd : dist(y,N) ≤ δ}.

Sδ 
ontains the stable equilibrium point xstable, and as su
h it isunique in Sδ if δ is small enough.The proof of Lemma 5.7.19 and Lemma 5.7.23 in [7℄ 
an beadapted to the domain Sδ, sin
e an exit of the limiting di�usion
Y∞ from the domain Oδ de�ned in se
tion 4.1 always requires anexit from Sδ. Hen
e, there exist ε1 > 0 and ̺1 > 0 su
h that

ε log sup
y∈S2̺

IP∞, y

(
Y∞

Σδ
̺
∈ N δ

)
≤ − inf

z∈N δ
Q∞(xstable, z) +

η

2for ε ≤ ε1 and ̺ ≤ ̺1, where Σδ
̺ denotes the �rst exit time from the domain Sδ \ B̺(xstable). By the
ontinuity of the quasi-potential, we have

− inf
z∈N δ

Q∞(xstable, z) +
η

2
≤ − inf

z∈N
Q∞(xstable, z) + ηif δ > 0 is small enough. Therefore, it is su�
ient to link the result about the limiting di�usion to the
orresponding statement dealing with ξs, y. By Lemma 4.5, we 
an �nd T1 > 0, ε1 > 0 and r1 > 0 su
hthat

ε log sup
y∈S2̺, s≥r

IPs, y

(
Σ̺ > T1

)
≤ − inf

z∈N
Q∞(xstable, z) +

η

2
∀ε ≤ ε1, r ≥ r1. (4.16)If Σ̺ ≤ T1 and ρ0,T1

(ξs, y, Y∞) ≤ δ, then {ξs, y
Σ̺

∈ N} is 
ontained in {Y∞
Σδ

̺
∈ N δ}. Thus,

IP
(
ξs, y
Σ̺

∈ N
)

≤ IP
(
ξs, y
Σ̺

∈ N, Σ̺ < T1

)
+ IPs, y(Σ̺ ≥ T1)

≤ IP
(
Y∞,y

Σδ
̺

∈ N δ
)

+ IP
(
ρ0,T1

(ξs, y, Y∞,y) ≥ δ
)

+ IPs, y(Σ̺ ≥ T1).By (4.16) and Proposition 3.10, the logarithmi
 asymptoti
s of the sum on the r.h.s. is dominated bythe �rst term, i.e. the lemma is established. �We are now in a position to establish the lower bound for the exit time whi
h 
omplements Proposition 4.6and 
ompletes the proof of Theorem 4.1.4.8 Proposition. There exists η0 > 0 su
h that for any η ≤ η0

lim sup
ε→0

ε log IPx0

[
τε
D < e(Q∞

−η)/ε
]

≤ −η/2 (4.17)and
lim inf

ε→0
ε log IEx0

[
τε
D

]
≥ Q∞. (4.18)27



Proof. In a �rst step we apply Lemma 4.7 and an adaptation of Lemma 5.7.23 in [7℄. The latter explainsthat the behavior of an It� di�usion on small time intervals is similar to the behavior of the martingalepart, whi
h in our situation is simply given by √
εWt. We �nd r0 > 0, T > 0 and ε0 > 0 su
h that for

ε ≤ ε0

sup
y∈S2̺, s≥r0

IP
(
ξs, y
Σ̺

∈ ∂D
)

≤ e−(Q
∞

−η/2)/ε,

sup
y∈D, s≥r0

IP
(

sup
0≤t≤T

‖ξs, y
t − y‖ ≥ ̺

)
≤ e−(Q

∞
−η/2)/ε.

x

ϑ1

τ0

τ1

ϑ2

τ2

D

In the sequel, we shall pro
eed as follows. Firstly, we wait for alarge period of time r1 until the di�usion be
omes �su�
ientlyhomogeneous�, whi
h is possible thanks to the stability assump-tion. Sin
e xstable attra
ts all solutions of the deterministi
system, we may �nd r1 ≥ r0 su
h that ψr(x0) ∈ B̺(xstable) for
r ≥ r1. Se
ondly, after time r1, we employ the usual argumentsfor homogeneous di�usions. Following [7℄, we re
ursively de�netwo sequen
es of stopping times that shall serve to tra
k thedi�usion's ex
ursions between the small ball B̺(xstable) aroundthe equilibrium point and the larger sphere S2̺ = ∂B2̺(xstable),before it �nally exits from the domain D.Set ϑ0 = r1, and for m ≥ 0 let

τm = inf{t ≥ ϑm : Xε
t ∈ B̺ ∪ ∂D},and

ϑm+1 = inf{t > τm : Xε
t ∈ S2̺}.Let us de
ompose the event {τε

D ≤ kT + r1}. We have
IPx0

(
τε
D ≤ kT + r1

)
≤ IPx0

(
{τε

D ≤ r1} ∪ {Xε
r1
/∈ B2̺(xstable)}

)
+ sup

y∈S2̺, s≥r1

IPs, y(τε
D ≤ kT ). (4.19)The �rst probability on the r.h.s. of this inequality tends to 0 as ε→ 0. Indeed, by the large deviationsprin
iple for Xε on the time interval [0, r1], there exist η0 > 0 and ε2 > 0 su
h that

ε log IPx0

(
{τε

D ≤ r1} ∪ {Xε
r1
/∈ B2̺(xstable)}

)
≤ −η/2for ε ≤ ε2 and η ≤ η0. For the se
ond term in (4.19), we 
an observe two di�erent 
ases: either thedi�usion exits from D during the �rst k exits from D \ B̺(xstable), or the minimal time spent betweentwo 
onse
utive exits is smaller than T . This reasoning leads to the bound

IPs, y(τε
D ≤ kT ) ≤

k∑

m=0

IPs, y

(
τε
D = τm

)
+ IPs, y

(
min

1≤m≤k
(ϑm − τm−1) ≤ T

)
.Let us now link these events to the probabilities presented at the beginning of the proof. We have

sup
y∈S2̺, s≥r1

IPs, y(τε
D = τm) ≤ sup

y∈S2̺, s≥r0

IPs, y(ξs, y
Σ̺

∈ ∂D),and
sup

y∈S2̺, s≥r1

IPs, y((ϑm − τm−1) ≤ T ) ≤ sup
y∈S2̺, s≥r0

IPs, y( sup
0≤t≤T

‖ξs, y
t − y‖ ≥ ̺),whi
h yields the bound

sup
y∈S2̺, s≥r1

IPs, y(τε
D ≤ kT ) ≤ (2k + 1)e−(Q

∞
−η/2)/ε.28



Thus, by 
hoosing k = ⌊(e(Q∞
−η)/ε − r1)/T ⌋+ 1, we obtain from (4.19)

IPx0
(τε

D ≤ e(Q∞
−η)/ε) ≤ e−η/2ε + 5T−1e−η/2ε,i.e. (4.17) holds. Moreover, by using Cheby
hev's inequality, we obtain the 
laimed lower bound for theexpe
ted exit time. Indeed, we have

IEx0
(τε

D) ≥ e(Q∞
−η)/ε(1 − IPx0

(τε
D ≤ e(Q∞

−η)/ε)) ≥ e(Q∞
−η)/ε(1 − (1 + 5T−1)e−η/2ε),whi
h establishes (4.18). �We end this se
tion with the proof of Theorem 4.2 about the exit lo
ation.Proof of Theorem 4.2. We use arguments similar to the ones of the pre
eding proof. Let

Q∞(N) = inf
z∈N

Q∞(xstable, z),and assume w.l.o.g. that Q∞ < Q∞(N) < ∞. Otherwise, we may repla
e Q∞(N) in the following bysome 
onstant larger than Q∞. As in the pre
eding proof, we may 
hoose T > 0, r0 > 0 and ε0 > 0 su
hthat
sup

y∈S2̺, s≥r0

IPs, y(ξs, y
Σ̺

∈ ∂N) ≤ e−(Q
∞

(N)−η/2)/ε ∀ε ≤ ε0,

sup
y∈D, s≥r0

IPs, y( sup
0≤t≤T

‖ξs, y
t − y‖ ≥ ̺) ≤ e−(Q

∞
(N)−η/2)/ε ∀ε ≤ ε0.It su�
es to study the event A = {τε

D ≤ kT + r0} ∩ {Xε
τε

D
∈ N} for positive integers k. We see that

IPx0
(A) ≤ IPx0

(Xε
r0
/∈ B2̺(xstable)) + sup

y∈S2̺, s≥r0

IPs, y(τε
D ≤ kT )

≤ IPx0
(Xε

r0
/∈ B2̺(xstable)) +

k∑

m=0

IPs, y(τε
D = τm, ξ

s, y
τε

D
∈ N)

+ IPs, y( min
1≤m≤k

(ϑm − τm−1) ≤ T )

≤ IPx0
(Xε

r0
/∈ B2̺(xstable)) + (2k + 1)e−(Q

∞
(N)−η/2)/ε.The 
hoi
e k = ⌊(e(Q∞

(N)−η)/ε − r0)/T ⌋+ 1 yields
IPx0

(A) ≤ IPx0
(Xε

r0
/∈ B2̺(xstable)) + 5T−1e−η/2ε.This implies that IPx0

(τε
D ≤ e(Q∞

(N)−η)/ε, Xε
τε

D
∈ N) → 0 as ε → 0. Now 
hoose η small enough su
hthat Q∞(N)−η > Q∞+η. Then Proposition 4.6 states that the exit time of the domainD is smaller than

e(Q∞
+η)/ε with probability 
lose to 1. The 
ombination of these two results implies IPx0

(Xε
τε

D
∈ N) → 0as ε→ 0.5 The gradient 
ase: examplesThe stru
tural assumption about Φ, namely its rotational invarian
e as stated in (2.4), implies that Φis always a potential gradient. In fa
t, this assumption means that Φ is the gradient of the positivepotential

A(x) =

∫ ‖x‖

0

φ(u)du.29



In this se
tion, we make the additional assumption that the se
ond drift 
omponent given by the ve
tor�eld V is also a potential gradient, whi
h brings us ba
k to the very 
lassi
al situation of gradienttype time homogeneous It� di�usions. In this situation, quasi potentials and exponential exit rates maybe 
omputed rather expli
itly and allow for a good illustration of the e�e
t of self-stabilization on theasymptoti
s of exit times.We assume from now on that V = −∇U is the gradient of a potential U on IRd. Then the drift of thelimiting di�usion Y∞ de�ned by (3.13) is also a potential gradient, that is
b(x) := V (x) − Φ(x− xstable) = −∇(U(x) + A(x − xstable)).A simple 
onsequen
e of Theorem 3.1 in [8℄ allows one to 
ompute the quasi-potential expli
itly in thissetting.5.1 Lemma. Assume that V = −∇U . Then for any z ∈ D,

Q∞(xstable, z) = 2(U(z)− U(xstable) + A(z − xstable)).In parti
ular,
Q∞ = inf

z∈∂D
2(U(z) − U(xstable) + A(z − xstable)).Observe that the exit time for the self-stabilizing di�usion is stri
tly larger than that of the 
lassi
aldi�usion de�ned by

dZε
t = V (Zε

t )dt+
√
εdWt, Zε

0 = x0.Indeed, by the theory of Freidlin and Wentzell,
lim
ε→0

ε log IEx0
(τε

D(Zε)) = inf
z∈∂D

2(U(z)− U(xstable)) < Q∞ = lim
ε→0

ε log IEx0
(τε

D(Xε)).The exit problem is in fa
t 
ompletely di�erent if we 
ompare the di�usions with or without self-attra
tion. We have already seen that the exponential rate is larger in the attra
tion 
ase. Let usnext see by some examples that the exit lo
ation may 
hange due to self-stabilization.5.1 The general one-dimensional 
aseIn this subse
tion we 
on�ne ourselves to one-dimensional self-stabilizing di�usions. In dimension one,the stru
tural assumptions 
on
erning Φ and V are always granted, and we may study the in�uen
e ofself-stabilization on exit laws in a general setting.Let a < 0 < b, and assume for simpli
ity that the unique stable equilibrium point is the origin 0. Denoteby U(x) = −
∫ x

0 V (u)du the potential that indu
es the drift V . As seen before, the intera
tion drift isthe gradient of the potential A(x) =
∫ |x|

0 Φ(u)du. Sin
e we are in the gradient situation, the exponentialrate for the mean exit time from the interval [a, b] 
an be 
omputed expli
itly.If we denote by τx(Xε) = inf{t ≥ 0 : Xε
t = x} the �rst passage time of the level x for the pro
ess Xε and

τI = τa ∧ τb, then the exit law of the 
lassi
al di�usion Zε (i.e. without self-stabilization) is des
ribed by
lim
ε→0

IP0(e
(Q∞

0
−η)/ε < τI(Z

ε) < e(Q
∞

0
+η)/ε) = 1,and

lim
ε→0

ε log IE0(τI(Z
ε)) = Q∞

0 ,where Q∞
0 = 2 min(U(a), U(b)). Moreover, if we assume that U(a) < U(b), then IP0(τI(Z

ε) = τa(Zε)) →
1 as ε→ 0.The pi
ture 
hanges 
ompletely if we introdu
e self-stabilization. The quasi-potential be
omes

Q∞
1 = 2 min(U(a) + A(a), U(b) + A(b)) > Q∞

0 ,30



so the mean exit time of Xε from the interval I is stri
tly larger 
ompared to that of Zε. This result
orresponds to what intuition suggests: the pro
ess needs more work and 
onsequently more time toexit from a domain if it is attra
ted by some law 
on
entrated around the stable equilibrium point.Furthermore, if a and b satisfy
A(b) −A(a) < U(a) − U(b),we observe that IP0(τI(X

ε) = τb(X
ε)) → 1, i.e. the di�usion exits the interval at the point b. Thus, weobserve the somehow surprising behavior that self-stabilization 
hanges the exit lo
ation from the left tothe right endpoint of the interval.5.2 An example in the planeIn this subse
tion, we give another expli
it example in dimension two, in order to illustrate 
hanges ofexit lo
ations in more detail.
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Figure 1: Potentials U (left pi
ture) and U + A (rightpi
ture).
Let V = −∇U , where

U(x, y) = 6x2 + 1
2y

2,and let us examine the exit problem for the ellipti
domain
D = {(x, y) ∈ IR2 : x2 + 1

4y
2 ≤ 1}.The unique stable equilibrium point is the origin

xstable = 0.The asymptoti
 mean exit time of the di�usion Zε
tstarting in 0 is given by lim

ε→0
ε log IE0(τ

ε
D(Zε)) = 4,sin
e the minimum of the potential on ∂D is rea
hed if y = ±2 and x = 0. Let us now fo
us on its exitlo
ation, and denote N(x,y) = ∂D ∩ B̺((x, y)). The di�usion exits asymptoti
ally in the neighborhood

N(0,2) with probability 
lose to 1/2 and in the neighborhood N(0,−2) with the same probability.PSfrag repla
ements Exit lo
ation of the
lassi
al di�usionExit lo
ation of theself-stabilizing di�usion
Now we look how self-stabilization 
hanges the pi
-ture. For the intera
tion drift we 
hoose

Φ(x, y) = ∇A(x, y), with A(x, y) = 2x2 + 2y2.Firstly, the self-stabilizing di�usion Xε startingin 0 needs more time to exit from D, namely
lim
ε→0

ε log IE0(τ
ε
D(Xε)) = 16. More surprisingly,though, the exit lo
ation is 
ompletely di�erent. Thedi�usion exits asymptoti
ally with probability 
lose to 1/2 in the neighborhoods N(−1,0) and N(1,0),respe
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