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Abstract

We investigate exit times from domains of attraction for the motion of a self-stabilized particle
travelling in a geometric (potential type) landscape and perturbed by Brownian noise of small am-
plitude. Self-stabilization is the effect of including an ensemble-average attraction in addition to the
usual state dependent drift, where the particle is supposed to be suspended in a large population of
identical ones. A Kramers’ type law for the particle’s exit from the potential’s domains of attraction
and a large deviations principle for the self-stabilizing diffusion are proved. It turns out that the exit
law for the self-stabilizing diffusion coincides with the exit law of a potential diffusion without self-
stabilization and a drift component perturbed by average attraction. We show that self-stabilization
may substantially delay the exit from domains of attraction, and that the exit location may be
completely different.
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1 Introduction

We examine the motion of a particle subject to three sources of forcing. Firstly, it wanders in a landscape
whose geometry is determined by a potential. Secondly, its trajectories are perturbed by Brownian noise
of a small amplitude. The third source of forcing can be thought of as self-stabilization. Roughly, it
characterizes the influence of a large population of identical particles subject to the same laws of motion.
They act on the individual through an attractive potential averaged over the whole population, which
adds to the underlying potential drift. More formally, denote by X the random position of the particle
at time ¢. It is governed by the d-dimensional SDE

dXx; :V(Xf)dt—/ O(X; — x) duf (z) dt + /edW. (1.1)
Rd
In this equation, V denotes a vector field on IRY, which we think of as representing a potential gradient,

the first source of forcing. Without the other two sources the motion of the particle would just amount
to the dynamical system given by the ODE

@ =V (z). (1.2)



The small stochastic perturbation by Brownian noise W of intensity € accounts for the second source
of forcing. It is responsible for random behavior of X¢, and allows for transitions between otherwise
energetically unreachable domains of attraction. The third forcing involving the process’ own law wuj
introduces a feature that we call self-stabilization. The distance between the particle’s instantaneous
position X7 and a fixed point x in state space is weighed by means of a so-called interaction function ®
and integrated in x against the law of X7 itself. This effective additional drift can be seen as a measure
for the average attractive force exerted on the particle by an independent copy of itself through the
attraction potential ®. In effect, this forcing makes the diffusion inertial and stabilizes its motion in
certain regions of the state space.

Equations of the type (1.1) are obtained as meso-scopic limits of micro-systems of interacting particles,
as the number of particles in an ensemble of identical ones tends to infinity, and subject to the same
first two sources of forcing, i.e. the force field V' and the Brownian noise of intensity €. Suppose we are
given an interaction function @, i.e. for any two particles located at = and y in state space the value
®(x —y) expresses the force of mutual attraction. This attraction can for instance be thought of as being
generated by electromagnetic effects. The dynamics of a particle system consisting of N such particles
is described by the stochastic differential equation

XN = ai. (1.3)

Here the W* are independent Brownian motions. The self-stabilizing effect we are interested in originates
in the global action of the system on the individual particle motion in the large particle limit N — oo.
Under suitable assumptions, in this limit the empirical measures % Ejvzl 0 X7V can be shown to converge
to some law uj for each fixed time and noise intensity, and each individual particle’s motion converges
in probability to the solution of the diffusion equation

dX} = V(X})dt — / O(X] — x) dui (z) dt + /edW;. (1.4)
R4

The aim of this paper is to extend the well known Kramers-Eyring law of exit from domains with
non-critical boundaries by particles diffusing in potential landscapes with small Gaussian noise to sys-
tems (1.1) which include the described self-stabilization effect. In the potential gradient case without
interaction, in which the individual particle’s motion is interpreted by the solution trajectories Z< of the
SDE

dZ; = —VU(Z5) dt + /edWy, (1.5)

Kramers’ law states that, in the small noise limit ¢ — 0, the asymptotic exit time of Z¢ from a potential
well of height H is of the order exp{%}. See the beginning of section 4 for a precise formulation
of this. We derive a similar statement for self-stabilizing diffusions. In particular we examine how
self-stabilization adds inertia to the individual particle’s motion, delaying exit times from domains of
attraction and altering exit locations. Mathematically, the natural framework for such an analysis is large
deviations theory for diffusions. Our key ingredient for an understanding of the small noise asymptotics
of the exit times proves to be a large deviations principle for self-stabilizing diffusions (1.1). In the
potential gradient case, the rate function in the large deviations principle just minimizes the energy
needed to travel in the potential landscape. If the particle undergoes self-stabilization, energy has to be
minimized in a landscape which additionally takes into account the potential of an attractive force that
depends on the particle’s distance from the corresponding deterministic path (1.2). Our main results
(Theorems 3.4 and 4.1, 4.2) state that the large deviations and the exit behavior of X¢ are governed
by this modified rate function. The techniques we employ to relate this time inhomogeneous case to



the classical time homogeneous one stipulate the assumption that the boundaries of the domains avoid
critical points of the potential.

Interacting particle systems such as (1.3) have been studied from various points of view. A survey about
the general setting for interaction (under global Lipschitz and boundedness assumptions) may be found
in [14]. There the convergence of the particle system to a self-stabilizing diffusion is described in the
sense of a McKean-Vlasov limit, and asymptotic independence of the particles, known under the name
propagation of chaos as well as the link to Burgers’ equation are established. Large deviations of the
particle system from the McKean-Vlasov limit were investigated by Dawson and Gértner [4]. Further
results about the convergence of the empirical distribution of the particle system to the law of the self-
stabilizing diffusion may be found in [3] or [10].

McKean studies a class of Markov processes that contains the solution of the limiting equation under
global Lipschitz assumptions on the structure of the interaction [11]. A strictly local form of interaction
was investigated by Stroock and Varadhan in simplifying its functional description to a Dirac measure
[13]. Oelschléger studies the particular case where interaction is represented by the derivative of the Dirac
measure at zero [12]. Funaki addresses existence and uniqueness for the martingale problem associated
with self-stabilizing diffusions [9].

The behavior of self-stabilizing diffusions, in particular the convergence to invariant measures, was studied
by various authors under different assumptions on the structure of the interaction, see e.g. [16], [15], [1]
and [2].

The material in this paper is organized as follows. In section 2 we discuss existence and unigness of strong
solutions to equation (1.1). Strong solvability is non-trivial in our setting due to the self-stabilizing term,
and is required for the subsequent investigation of large deviations. In section 3 we derive and analyze
the rate function modified by self-interaction, and this way obtain a large deviations principle for the
diffusion (1.1). This proves to be the key ingredient for the analysis of exit times and a derivation of a
version of Kramers’ law for self-stabilizing diffusions in section 4. We conclude with an illustration of
our main results by discussing some examples which emphasize the influence of self-stabilization on exit
time and exit location (section 5).

2 Existence and uniqueness of a strong solution

The derivation of a large deviations principle for the self-stabilizing diffusion (1.1) in the subsequent
section involves pathwise comparisons between diffusions in order to apply the usual tools from large
deviations theory, such as contraction principles and the concept of exponential equivalence. Their
applicability relies on strong existence and uniqueness for equation (1.1), which is non-trivial in our
situation since the solution process’ own law appears in the equation. The interesting interaction term
[ ®(X§ — ) duf(x) also adds a considerable amount of complexity to the mathematical treatment. It
depends on uf = IPo(X7)~!, thus classical existence and uniqueness results on SDE as well as the
classical results on large deviations for diffusions (Freidlin-Wentzell theory) are not directly applicable.
Consequently, the question of existence and uniqueness of solutions for equation (1.1) is an integral part
in any discussion of the self-stabilizing diffusion’s behavior, and will be addressed in this section.

We follow Benachour et al. [1] to design a recursive procedure in order to prove the existence of the
interaction drift b(t,x) = [®(z — y)du$(y), the second drift component of (1.1). More precisely, we
shall construct a locally Lipschitz drift term b(¢, ) such that the classical SDE

dX; =V(X7)dt —b(t, X5)dt +/edW,, t >0, (2.1)



admits a unique strong solution, which satisfies the additional condition
Hea) = [ 0@y duits) = B {0 - X)), (22)

In (2.1) W is a standard d-dimensional Brownian motion, and V : R? — IR? mimics the geometrical
structure of a potential gradient. Existence and uniqueness for equation (1.1) will be understood in the
sense that (2.1) and (2.2) hold with a unique b and a pathwise unique process X. For locally Lipschitz
interaction functions of at most polynomial growth, Benachour et al. [1] have proved the existence of
strong solutions in the one-dimensional situation, and in the absence of the vector field V. Since V
forces the diffusion to spend even more time in bounded sets due to its dissipativity formulated below,
it imposes no complications concerning questions of existence and uniqueness. Qur arguments rely on a
modification of their construction.

Besides some Lipschitz type regularity conditions on the coefficients, we make assumptions concerning
the geometry of V' and ® which render the system (3.1) dissipative in a suitable sense. All necessary
conditions are summarized in the following assumption.

2.1 Assumption.

i) The coefficients V' and © are locally Lipschitz, i.e. for R > 0 there exists K > 0 s.t.
V(z) =Vl +[[®(x) -2 < Krlz—yl (2.3)
for z,y € BR(0) ={z e R?: |z| < R}.

it) The interaction function ® is rotationally invariant, i.e. there exists an increasing function ¢ :
[0,00) — [0, 00) with ¢(0) =0 such that

x

md)(“ﬂﬂll% zeR". (2.4)

D(x) =

iii) © grows at most polynomially: there exist K > 0 and r € IN such that
1@(z) = @)l < lle—yl| (K + [l +yl"), zyeR. (2.5)

) V is continuously differentiable. Let DV () denote the Jacobian of V. We assume that there exist
Ky >0 and Ry > 0 such that
(h, DV (2)h) < =Ky (2.6)

for he R s.t. ||h]| =1 and x € R? s.t. ||z| > Ry.

The conditions that make our diffusion dissipative are (2.4) and (2.6). (2.4) means that the interac-
tion is essentially not more complicated than in the one-dimensional situation and has some important
implications for the geometry of the drift component IE [@(x — Xf)] originating from self-interaction,
namely that it points back to the origin. The same holds true for V' due to (2.6). In the gradient case
V = —VU, —DV is the Hessian of U, and (2.6) means that its eigenvalues are uniformly bounded from
below (w.r.t. ) on neighborhoods of co. (2.5) is just a convenient way to combine polynomial growth
and the local Lipschitz assumption in one condition. In the following two lemmas we summarize a few
simple consequences of these assumptions.

2.2 Lemma. There ezist constants K,n, Ry > 0 such that the following holds true:

a) For all z,y € R?
(x =y, V(@)= V(y) <K e -y (2.7)



b) For x,y € R* such that ||z —y|| > Ry
(z =y, V(z) = V() < —nllz —yl*. (2.8)

¢) For x € R* with ||z|| > R,
(,V(2)) < —nal®. (2.9)

Proof. Note first that, by continuity of DV, there exists K > 0 such that
(h, DV (z)h) < K

holds for all  and all h of norm 1. Moreover, for z,y € R?, z # y, we have

Vix / -y
DV (y+t(a — ) ——L dt,
III - y|| = —yll
and therefore @) » .
z—y V(z)—V(y > /
, = h,DV(y +t||x — y||h)h) dt, (2.10)
ol e ) =) ¢ )
where h := ” ” Since the integrand is bounded by K, this proves a).
For b), observe that the proportion of the line connecting = and y that lies inside Bp,(0) is at most
%. Hence
< x—y 7V(;zc)—V(y)>< 2Ry Kv( 2Ry )
lz—yl" llz—yll = —yll |z —yll

which yields b).

¢) is shown in a similar way. Let # € R? with ||z| > Ry, and set y := Ropgp- Then the same argument
shows the sharper bound

-y V(x)—V(y)>:<fE V(I)—V(y)>7

_KV > < ) NPATE
lz—yl" Nz -yl f|” =l -

since the line connecting « and y does not intersect Br,(0). Hence
(2, V(2)) < =Ky ||zl (=]l = Ro) + ||| ||V(y)|| :

which shows that (2.9) is satisfied if we set Ry = max{2R, 4sup, - Ro ”} and n = TV' O

2.3 Lemma. For dall z,y,z € R we have

o) 10(z — y)l| < 2K + (K +2741) (2™ + gl +).
) 8 —2) ~ 2y — )| < llz—yll [K+2 ([l + loll” +220")],
&) 80 —y) = B —2)| < Kully ==l (1+ ") (1+ [yl + 1217),  where Ky = max(K,27+1).

A

d) For all x,y € R and n € N
(" = yllyl™, ®(z —y)) > 0. (2.11)
Proof. By (2.5) and since ®(0) = 0 we have

1@z -9l < llz =yl (K+e—yl") < K(l]+llyll) + 27 (™ + ™)
K@+l + llyl™) + 27 (all™ + Jly) ™)
= 2K + (K +27") (Jl]"" + ™),

IN



i.e. a) is proved. For b), we use (2.5) again to see that
1@ —2) =@y —2)l| < llo—yll (K+[lz—2]"+lly—=]")
< lz =yl [K+27 (=l + lyl" + 2=l )]
Property c) follows from ®(—z) = —®(z) by further exploiting b) as follows. We have
1@z —y) = @z —2)| < llo—yl [K+27" (el + lyl" + [121")],

which obviously yields c). Finally, d) follows from a simple calculation and (2.4). Obviously, (2.11)
is equivalent to (z||z]|" — v ||ly||" ,> —y) > 0. But this is an immediate consequence of the Schwarz
inequality. O

Let us now return to the construction of a solution to (1.1), i.e. a solution to the pair (2.1) and (2.2). The
crucial property of these coupled equations is that the drift b depends on (the law of) X< and therefore
also on V', ¢ and the initial condition xy. This means that a solution of (2.1) and (2.2) consists of a pair
(X,b), a continuous stochastic process X and a drift term b, that satisfies these two equations.

Our construction of such a pair (X,b) shall focus on the existence of the interaction drift b. It will
be constructed as a fixed point in an appropriate function space such that the corresponding solution
of (2.1) fulfills (2.2). Let us first derive some properties of b that follow from (2.2).

2.4 Lemma. Let T > 0, and let (X¢)o<t<T be a stochastic process such that sup IE [||Xt||r+1] < 0.
Then b(t,x) = IE [®(z — X;)] has the following properties: =

a) b is locally Lipschitz w.r.t. x € RY, and the Lipschitz constant is independent of t €0,T].

b) (z—y,b(t,z) —b(t,y)) >0 for all z,y € R?, t € [0,T].

¢) b grows polynomially of order r + 1.

Proof. Note first that y — ®(x — y) grows polynomially of order » + 1 by Lemma 2.3 a), so that b is
well-defined. Moreover, we have

||b(t,$)|| < IE [H(I)(!E - Xt)H] < 2K + (K + 2r+1)(||x||r+l +E [HXtHr-i-l ])7

which proves c). For a) observe that, by Lemma 2.3 b), we have for z € R?, z,y € Bg(0)

[@(z —2) =By — 2)|| < llz =yl [K+2"" (R + ||2]")].
Hence
bt ) = b(t,y)| < E[[®(x—X:) - Py — Xo)|]
< o=yl [K+ 2" (R + E [[| X" ])]

for z,y € Br(0). Since sup IE [||Xt||r+l} < 00, this implies a).
0<t<T

In order to prove b), fix t € [0,7], and let y = P oX, . Then

(@ =9 bt2) = b(t.9) = [ (= (e ul) -

The integrand is non-negative. Indeed, it equals

Yy—u
Ty = ulh) s

I =l (= wl) + lly = wll 6y = ) = {y = v ==l = wl)) = (7 = o=l — ul))
> o = ull ¢(la = ul) + ly — ullé(lly = ul) = lly = ull o(le = ull) = llz = wl $(ly — ul)

(Il = ull = {ly = ul)(¢(lz = ull) = (lly = ull)),

which is non-negative since ¢ is increasing, so b) is established. (|



In the light of the preceding lemma it is reasonable to define a space of functions that satisfy the above
stated conditions, and to look for a candidate for the drift function in this space. Let T' > 0, and for a
continuous function b : [0, 7] x R? — IR? define
(¢, =)
[bll7 :== sup sup TR (2.12)
tef0.7) zeme 1+ [|2]]

where ¢ € IN is a fixed constant such that 2¢ > r, the order of the polynomial growth of the interaction
function ®. Furthermore, let

Ar = {b [0, 7] x R — R? ’ [1b]l < 00, @+ b(t,z) is locally Lipschitz, uniformly w.r.t. t}. (2.13)

Lemma 2.4 shows that, besides being an element of Az, the drift of (2.1) must satisfy the dissipativity
condition
(z—y,b(t,x) = b(t,y)) >0, =z,yeR". (2.14)

Therefore, we define
Ar = {b € A : b satisfies (2.14)}. (2.15)

It is obvious that |||, is indeed a norm on the vector space Ap. The subset Ap will be the object of
interest for our construction of the interaction drift in what follows, i.e. we shall construct the interaction
drift as an element of Ap for a proper choice of the time horizon T'.

Once we have constructed the drift, the diffusion X will simply be given as the unique strong solution
of (2.1) due to the following rather classical result about strong solvability of SDEs. It ensures the
existence of a unique strong solution to (2.1) for a given drift b and is a consequence of Theorem 10.2.2
in [13], since pathwise uniqueness, non-explosion and weak solvability imply strong solvability.

2.5 Proposition. Let 8 : Ry x RY — RY, (t,z) — B(t,x), be locally Lipschitz, uniformly w.r.t.
t €10,T] for each T > 0, and assume that

sup |[|B3(t,0)]| < oo
0<t<T

for all T > 0. Moreover, suppose that there exists ro > 0 such that
(2,8(t,2)) <0 for |l = ro.

Then the SDE
dX; = B(t, Xy) dt + /edW,

admits a unique strong solution for any random initial condition X.

It is easily seen that the drift 5(¢,x) = V(x)—b(t, x) does indeed satisfy the assumptions of Proposition 2.5
for any b € Ap. This is an immediate consequence of (2.9) and (2.14).

To construct a solution of (1.1), we proceed in two steps. In the first and technically most demanding
step, we construct a drift on a small time interval [0,7]. We shall define an operator I' such that (2.2)
translates into a fixed point property for this operator. To ensure the existence of a fixed point, one needs
contraction properties of I' which shall turn out to depend on the time horizon 7. This way we obtain
a drift defined on [0, 7] such that the associated solution X exists up to time 7. In a second step, we
show that this solution’s moments are uniformly bounded w.r.t. time, which guarantees non-explosion
and allows us to extend X to the whole time axis.

To carry out this program, we start by comparing diffusions with different drift terms.



2.6 Lemma. For b',b?> € Ar consider the associated diffusions
dY; = V(Y;)dt — b (t,Y;) dt + /edW;

and
dZ, = V(Z;) dt — b*(t, Z;) dt + \/edW;,

and assume Yy = Zy. Then fort <T

t
1V — Zy|| < 57 ||o" — b2HT/O (141217 ) ds.

Proof. Since Y — Z is governed by a (pathwise) ODE, we have

LY, -2 LY, -2
Y — Zi|| = T V() — V(Zs) ) ds — T (s, Ys) — b (s, Zs) ) d
=zl = [ (=g VO = Vz)ds = [ (Grmgm s — (5. 20 ds

LY, —Z
=22 p2(s, Zs) — b (s, Zs) ) ds.
+ [ (g e s~ ez ds

The second integral in this decomposition is positive by definition of Ap, so it can be neglected. Fur-
thermore, the first integral is bounded by K fg lYs — Zs|| ds due to the dissipativity condition (2.7) on
V. The last integral is bounded by

t t
2
[z = vzl as < o =, [z as

Combining these estimates yields

t t )

i~ 2l < K [ 1V~ 2] ds 0t =9, [ ez as

0 0

Now an application of Gronwall’s lemma completes the proof. O

The liberty of choice for the drift terms in Lemma 2.6 allows us to get bounds on Y and its moments by
making a particular one for Z. We consider the special case of a linear drift term b(¢, z) = Az.

2.7 Lemma. Let A\ > K, and let Z be the solution of
dZ, =V (Z))dt — \Zy dt + /e dW,.

Furthermore, assume that IB(|| Zo|*™) < oo for some m € IN, m > 1.
Then for all t >0

e(dm+m — 1)t}7

2m T —
B[|Z"] < 2mt VO B exp { =T
1

if Zo =0 a.s.,

and
ge(dm+m—1)t
(B[] Z]*"]) ™

e(dm+m — 1)t}

E[1Z7"] < B[1Z)*"] exp{ R2
1

} + 2mt |V (O] B exp {

otherwise.

Proof. By It6’s formula we have for n > 2

120" = N2l +37 0 [ N2 (20 VIZ)) = MIZ" dst lnn=2) [ 1272 ds. (210



where M™ is the local martingale M* = n./z fg (Z N Z|"2, dWs).

Since (x,V(z)) < —n||z||* for ||z > Ry according to (2.9), the first integrand of (2.16) is negative if
| Zs|| > Ry. If || Z4|| < Ry, we use the global estimate (z, V(z)) < K ||z||> + ||V (0)]| |||, which follows
from (2.7). We deduce that, since A > K,

1Z" % (26, V(Z0)) = A Zs|™ < (K = NI Z|™ + VO IZ" ™ < [V(0)l| By~

Thus,
t
n n n n— £ n—
1Z:l™ < N1 Zoll” + M{* +n|[V(0)[| tRY 1+§(dn+n—2)/ 1Z]"* ds. (2.17)
0

Using a localization argument and monotone convergence yields
t
n n n— € n—2
E[[Z]"] <®[1Z]"] +nl[VO) ¢RI ™" + S(dn +n - 2)/0 E[[|Z:""] ds. (2.18)

We claim that this implies

m S m—j) 1 (@mt)’ VO p2m amt)!
E[1Z"] < SB[ 2] S o R +1§: i (2.19)
Jj=0

j=1

for all m € IN, m > 1, where «a,,, = e(dm + m — 1). Indeed, for m = 1 this is evidently true by (2.18).
The general case follows by induction. Assume (2.19) holds true for m — 1. Then by (2.18)

E[[Z*"]

IN

E [I\Zol\%} +2m ||V (0)| tRy™
1 H -1

o [l ZE 200t — ) O s 5 e

Jj=2 Rl
IE [I\Zol\%} +2m ||V (0) Ry

IN

Jj—1 J 2
+zam [11Zo]* ”}—] +2m |V (0) | B} 12 n

— " m— J m 71 tj
< 2 [V B+ B (12D 122 o (o)) RS S 1
=0 7t =
- m— J m 71 tJ
= S R[22 ) 2 o v (o) R “Z R
=0 Jt =1

and so (2.19) is established. Since IE [||Z0||2(m7j)} < (E [||Z0||2m])1_% for 7 < m, we may ex-
ploit (2.19) further to conclude that

2m 2m E / / m— O[J I tJ L
E[[Z/""] < E[1Z]™™] ) —— +2mt |[V(0)|| B} 12 e
=0 j! (I HZoll N = I
m amt m— amt
< B[] 2l }exp{ 2m 1}+2mtl|V(0)|| R 1exp{?},
(IE [||Zo|| ]) " 1
which is the announced bound if we identify the first term as zero in case Zy = 0. O

Let us define the mapping I' on A that will be a contraction under suitable conditions. For b € Ap,
denote by X® the solution of

dX; = V(Xy)dt —b(t, Xy) dt + /edWs, (2.20)

and let T'b(t,z) :=E [<I> (w — Xt(b))}. By combining the two previous lemmas, we obtain the following a
priori bound on the moments of X (),

ds



2.8 Lemma. Assume that the initial datum of (2.20) satisfies IE [||Xéb)H2qn] < oo for some n € IN.
For each T > 0 there exists k = k(n,T) > 0 such that for all b € Ap

sup E[|| X" < k(1+Te BT (bl + K™)).
0<t<T

Proof. Let b!(t,2) := b(t,z) and b*(t,r) = Kx, and denote by Y, Z the diffusions associated with b,
b%. By Lemma 2.6 we have for ¢ € [0, 7]
E[[V["] <2"@® [ Z)" ] + E[1Y: = Z]"])

t
<2 B[4 + 2T -] [ 2]
0
<2"(L+E [ Z)*"]) + 2™ e (|0 + [18*]],)" oquTIE (L4 11Z4]1*)™]

<8 (L+ sup B[ Z)*"]) (1 + e ([0 7 + 107]17))-
0<s<T

Due to the assumption IE [HXéb)qun} < o0, the constant k(n,T) = 8" (1 + supg<,<r IE [1Z:]7]) is

finite by Lemma 2.7. Furthermore, we have Hb2HT < K, i.e. the lemma is proved. [l

Now we are in a position to establish the local Lipschitz continuity of the operator I'. The explicit
expression for the Lipschitz constant shows that I' will be a contraction on a sufficiently small time
interval.

2.9 Lemma. Let b',b?> € Ap, and denote by Y,Z the corresponding diffusions as in Lemma 2.6. For
i € IN let mi(T) = supg<;<7 IE [ ||Y}||l} and n;(T) = supy<;<p IE [ ||Zt||z} )
There exists a constant k = k(may(T),naq(T)) such that

[Ty — Ty, < kVTeET |0 — 02| 7.

Proof. From Lemma 2.3 ¢) and the Cauchy-Schwarz inequality follows that
[Tb'(t,2) —To*(t,z)|| < E[[|®(z—Y;) — @(x— Z)| ]
<K (T [l2l") E Y = Zell Q4+ [1Yell" + 1Z:]7)]

r 2 s 2
< Ka(1+ ol WE [ — Z0PTE [(1+ 1% + 1207 )],
where K; = max(K,2"™!). By Lemma 2.6, since (1 + x)? < 2(1 + 2?), we have

2 2KT |11 212 g 2q 2
B{IY-zl°) < - B[ [ 01z )]
T
< e2KTHb1—b2|\2T/ E [(1+]/Z4])?]ds
0
<

2T ¢2KT bt — b2||; (1 + sup E [||Zs||4q]>'
0<s<T

Moreover, using the inequality (a + b)? < 2(a? + b?), we deduce that
T r\2 2r 2r 4 4
E [+ +1Z]")"] < 20+ 2E[I[VT +1Z)™]) < 10(1+E[[[Ye]™ +[1Z:]™]),

where we exploited that 2¢ > r implies IE [||Yt||2r] <1+E [||Yt||4q], and likewise for the moment of Z;.
By combining all these estimates, we find that

1 2 r
||Fb (t,z) Fi’ (t,x)” < 9K VBT KT Hbl B b2HT 1+ ||515||2
LA+ [ L[]

4q 1/2 4q 4q
X (1+ sup IE [[|Z]] D (1+IE[||Yt|| + (| Ze|l D
0<s<T

1/2
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Hence, if we set k := 4K1v/5{ (1 + n4q(T)) (1 + maq(T) + nag(T)) }1/2, we may conclude that

|ret =10, < BVT 57 ||pt — 0%,

I

i.e. k is the desired constant. O

The next proposition shows that the restriction of I" to a suitable subset of the function space Ar is a
contractive mapping, which allows us to construct a solution on a small time interval.

2.10 Proposition. For v > 0 let A}, = {b € Ar : ||b||; < v}. Assume that the initial condition X,
satisfies IE [||X0||2q"] < oo for some n > 4q. There exists vog > 0 such that for any v > vy there exists
T =T(v) > 0 such that the following holds true:

a) T(A%) C AY., and the Lipschitz constant of T|AY. is less than 3.
b) There exists a strong solution to (2.1), (2.2) on [0,T] which satisfies

sup BIXOI] < k(1 + TR 4 K7),
0<t<T

where k = k(n,T) is the constant introduced in Lemma 2.8.

Proof. Let b € Ar, and let X = X® and m;(T) = supy<;<p IE [||Xt||l] for i € IN. By Lemma 2.8 the
condition IE [||X0||2qn} < oo implies m;(T') < oo for T' > 0 and i < n. Moreover, Lemma 2.3 shows that

r r+1 r+1 o r+1 r+1
ITo(t,2)] < 2K + (K + 27 ([l + E[IX]]) < K@+ ™) (L +E X)),
where K = 2K + 2" . Consequently, by definition of |||,

ITb)|p < 2K(1 +mpq1a(T)), t<T. (2.21)

By Lemma 2.8 there exists k = k(r 4+ 1,T) > 0 such that
M (T) < k(14 TeTVET(p|7F 4 K7+1)). (2.22)

This inequality, together with (2.21), is the key for finding a suitable subset of A7 on which I' is con-
tractive. The r.h.s. of (2.22) converges to k as T — 0, and this convergence is uniform w.r.t. b € A%
for each ¥ > 0. The dependence of the limiting constant k on T imposes no problem here; just fix
k = k(r+1,Ty) > 0 for some Ty and use the fact that (2.22) is valid for all T < Tp, as the proof of
Lemma 2.8 shows.

Thus, we may fix vy > 2K (1 + k) and deduce that for any v > 1y we can find Ty = Ty(v) such that
16l < v implies ||Tb]|; < v for T' < Ty. Moreover, by Lemma 2.4, T'b satisfies all the conditions as
required for it to belong to Az, i.e. I' maps A¥% into itself for all 7' < Tj. Additionally, the assumption
n > 4q implies that my,(T) is uniformly bounded for all b in A%, and Lemma 2.9 shows that, by even-
tually decreasing Ty, we can achieve that I' is a contraction on A7, with Lipschitz constant less than %,
i.e. a) is established.

In order to prove b), the existence of a strong solution on the time interval [0, 7] for some T < Tp, we
iterate the drift through I'. Let by € A%, and define

anrl =T, for n € INg .

The contraction property of I' yields ||b, 41 — bn||; < 27" ||by — bol|, for all n, and therefore
Z ||bn+1 - bn”T < 00,
n=0
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which entails that (by,) is a Cauchy sequence w.r.t. ||-||;. By definition of ||-||;, (b,) converges pointwise
to a continuous function b = b(t, z) with ||b||; < oco. It remains to verify that the limit is again an element
of Ar. In order to see that it is locally Lipschitz, let X (") := X (=) As in the proof of Lemma 2.4, we
have for x,y € Br(0)

b (8, ) — Tha(t, )| < T [||@(x — X{™) — By — X™)|]

IN

o =yl (1 + 27 (BT + B [JIXT)]
Since ||by || < v for all n, (2.22) yields

sup sup I [[| X)) < k(14 TertDET (rtt 4 K1),

nelN 0<t<T
Therefore, we may send n — oo to conclude that b is locally Lipschitz. b being the pointwise limit of the
b, it inherits the polynomial growth property and the dissipativity condition as stated in Lemma 2.4 b)
and c). (Notice that we may not invoke Lemma 2.4 at this stage.)

It remains to show that the diffusion X = X®) associated to b has the desired properties. Note first that
the existence of X is guaranteed by the classical result of Proposition 2.5. Since I'b = b, which means
that

b(t, z) = Tb(t,x) = E [®(x — X))

for t € [0,7] and € IR, X is the diffusion with interaction drift b. The boundedness of its moments is
again a consequence of Lemma 2.8. O

Let us recall the essentials of the construction carried out so far. We have shown the existence of a
solution to (1.1) on a small time interval [0,7]. For the moments of order n to be finite, one needs
integrability of order 2¢gn for the initial condition. Moreover, the parameter n needs to be larger or equal
to 4¢g in order for the fixed point argument of Proposition 2.10 to work. Observe that the condition
n > 4q appears first in this Proposition, since this is the first time the process is coupled to its own drift,
while in all previous statements the finiteness of moments is guaranteed by the comparison against the
diffusion Z, which is governed by a linear drift term.

In order to find a solution that exists for all times, we need to carefully extend the constructed pair (X, b)
beyond the time horizon T'. Although non-explosion and finiteness of moments would be guaranteed for
all T' by Proposition 2.5 and Lemma 2.8, we have to take care of the fact that the drift itself is defined only
on the time interval [0,7]. With sufficiently strong integrability assumptions for X, one could perform
the same construction on the time intervals [T, 2T, [27,3T] and so on, but one loses an integrability
order 2¢ in each time step of length 7.

For that reason we need better control of the moments of X over the whole time axis, which is achieved
by the following a posteriori estimate.

2.11 Proposition. Let m € IN, m > 4¢?, such that IE | ||X0||2m] < 00. For each n € {1,...,m} there
exists a constant o = a(n) > 0 such that the following holds true for all T > 0: if X solves (1.1) on
[0,T], then

sup IE[[|X]*"] < a(n).

0<t<T
Proof. Let f,(t) = IE[|X;]|*"], and let b(t,z) = IE [®(z — X¢)]. We proceed in several steps.

Step 1: Boundedness in L?. By Lemma 2.8 we know that supg<;<7 f1(t) < oo. The only point is to
show that the bound may be chosen independent of 7. By It6’s formula we have

t

) =E [ Xol*] +etd + 2 /0 E [(X,, V(X,))] ds — 2 /0 E [(X,,b(s, X,))] ds.
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Let us first estimate the last term that contains the interaction drift . By its definition, we may take
an independent copy X of X, to write

21E [(Xs,b(s, X,))] = 2IE [(X,, (X, — X,))] = E [(X,, ®(X, — X,))] — E [(X,, &(X, — X,))]
=E [<Xs - Xsu (I)(Xs - Xs)” > 0

where the last inequality is due to (2.4). In order to estimate the other integral, let R > R;. Using (2.9)
and the local lipschitz property of V', we see that

E [(X., V(X))] < =nE [|X? Lx s ry) + B (K 1X)7 + VO IXD1gx0 <Ry
< =B [[|X,]* ] + (0 + K)R* + [[V(0)|| R = —nfi(s) + R(|V(0)|| + R(n + K)).
Obviously, f; is differentiable, and summing up these bounds yields
fi(t) < ed=2nfi(t) + 2R([V(0)|| + R(n + K)).

Thus, there exists v > 0 such that {t € [0,7]: fi(t) >~} C {t € [0,T] : f{(¢t) < 0}, which implies
f1(t) < f1(0) v for all ¢ € [0, T]. This is the claimed bound, since + is independent of T'.

Step 2: Moment bound for the convolution. Let X be an independent copy of X, i.e. a solution of (1.1)
driven by a Brownian motion that is independent of 7. In this step we shall prove that IE[[| X, — X,||*"]
is uniformly bounded w.r.t. time.

Let R > Ry, and let 7 = inf{t > 0 : | X; — X;| > R}, gu(t) = E[| X; — X¢[|*"1{;<ry] and wy,(t) =
E[|| X:ar — Xrnel?"]. Then w,(t) = g,(t) + R**P(t > 7). Furthermore, using the SDE (1.1) for both
X and X, applying Ito’s formula to the difference and taking expectations, we obtain for n > 1

tAT
wa(t) = B[ Xo — Xol>"] + e(dn +n—1) E [/ X = X2 ds|
0
tAT ~ N N
+2n {/ X = Kl 72X, — X, V(X) - V(X)) ds]
0
tAT ~ N ~
—m E [/ X = Kl 20X, = K, b(s, X,) = bls, £,)) ds]
0
The last term is negative by Lemma 2.4, which yields together with (2.7), (2.8) and Hélder’s inequality
Wl () <e(dn+n—1) T [IX - X" 21 0]
+ 20 B [|1X0 - XX - K0, VX) = V(R geer)
< eldn+n=1)ga-1(t) + 20(K + 1) B [1X = Kl L1 z1<m,ro ]
=20 T [|X; = Xl Lpary]
<eldn+n-—-1) gn(t)k% + 2n(K + n)RI™ — 2nngn ().

As in the first step, there exists some constant ¢ > 0 such that {¢t € [0,T]: g¢,(¢t) >} C {t € [0,T]:
wy,(t) < 0}. Since w, — g, is non-decreasing this implies g,,(t) < ¢,,(0) vV § for all ¢ € [0,7]. Moreover,
0 depends only on the constants appearing in the last inequality and is independent of the localization
parameter. Hence, by monotone convergence, we have

E[||X, - X[I*"] < E[|Xo - Xol*] Ve,  tel[0,T].

Step 3: Bound for the centered moments of X. In this step we shall prove that the moments of Y; :=
X: — IE[X{] are uniformly bounded. We proceed by induction. The second moments of X are uniformly
bounded by the first step, so are those of Y. Assume the moments of order 2n are uniformly bounded
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by n > 0. If n + 1 < m, we may invoke step 2, to find 8,11 > 0 such that B[||X; — X3||*"*?] < 6,41
for t € [0,T]. Now we make the following observation. If £,  are independent, real-valued copies of each
other with IE[{] = 0, then

Ble- 9 = 2w ) (M) o m e,
k=2

and therefore

A

0 [§2n+2] < E [(5 _ g)2n+2] n Zn <2nl;i— 2) ‘IE} [5’“} E [§2n+2—k]|

k=2

< E [(5 _ g)2n+2] + 22n+2(1 +1IE [gznb%

Let us apply this to the components of Y, and denote them by Y!,... Y9 We obtain for ¢t € [0, 7]

d
2IE [||Yt||2n+2] < 2" IE [Z(Ytj)%“}
j=1
d - |
< d Y - KP4 2 (1 0]

j=1

< d"+2(IE (11X = Xl 2] + 222 (1 + B | ||Yt”2n})2>

< 4 (81 +227 2 (14 7)),

which is a uniform bound for the order 2(n + 1).

Step 4: Bound for the moments of X. In the fourth and final step, we prove the announced uniform
bound for the moments of X. It follows immediately from the inequality

B [1X)™"] < 22" (T [I1X: — BRG] ]+ JERG]1*).

The last term satisfies |[IE[X;]||*" < f1(¢)", which is uniformly bounded according to step 1, and the
centered moments of order 2n are uniformly bounded by step 3 whenever n < m. O

The results concerning the existence of X¢ are summarized in the following theorem.

2
2.12 Theorem. Let ¢ := [5+1], and let X be a random initial condition such that IE [||X0||8q ] < 0.
Then there exists a drift term b(t,x) = b5X0(t, ) such that (2.1) admits a unique strong solution X¢
that satisfies (2.2), and X¢ is the unique strong solution of (1.1). Moreover, we have for all n € IN

supE [ || X5)*"] < o0 (2.23)
t>0

whenever IE | ||X§||2n] < 00. In particular, if Xo is deterministic, then X¢ is bounded in LP(IP @X(o 77)
for allp > 1. X is used as a symbol for Lebesque measure throughout.

Proof. In a first step, we prove uniqueness on a small time interval. Let K = 2K + 27+1 and choose
a(g) > 0 according to Proposition 2.11. By Proposition 2.10 there exist v > 2K(2+a(q)), T = T(v) > 0
and b € A% such that Tb = b, ie. X = X® is a strong solution of (1.1) on [0,7]. Assume Y is
another solution of (1.1) on [0, T] starting at Xy such that maog(T") := supg<i<r E[||Y;]*?] < oo, and let
c(t,x) =IE [®(z — Y;)]. Then ¢ € Ay by Lemma 2.4, and I'c = c. Moreover, it follows from (2.21) and
Proposition 2.11 that

lellp < 2K(24may(T)) < 2K(2+4alq)) < v,
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i.e. ¢ € AY.. Hence c is the unique fixed point of I'|A%.. Thus ¢ = b, and Proposition 2.5 yields X =Y.

In the second step, we show the existence of a unique solution on [0, c0). Let

U := sup {T > 0: (1.1) admits a unique strong solution X on [0,T], sup IE [||Xt||2q} < oo}.
0<t<T

By the first step we know that U > 0. Assume U < co. As in the first step, choose a(4¢?) > 0 according
to Proposition 2.11, and then fix 7 > 2K (2 + a(4¢?)) and T = T(7) > 0 that satisfy Proposition 2.10.
Let 0 < § < min(U,T/2), and fix T €]U — 6, U[. There exists a unique strong solution X on [0, 7], and
IE[||XT||8q2] < oo by Proposition 2.11. Now consider equation (1.1) on [T, 00) with initial datum Xrp.
As in the first step, we may find a unique strong solution on [T, T + T] But this is a contradiction since
T +T > U. Consequently, U = oo, and (2.23) holds by Proposition 2.11. O

3 Large deviations

Let us now turn to the large deviations behavior of the diffusion X¢ given by the SDE (1.1), i.e.

dX; =V(X7)dt — / O(X; — o) duf (z) dt + VedWy, t>0, Xo=mx9 € R?. (3.1)
Rd

The heuristics underlying large deviations theory is to identify a deterministic path around which the
diffusion is concentrated with overwhelming probability, so that the stochastic motion can be seen as a
small random perturbation of this deterministic path. This means in particular that the law uj of X7
is close to some Dirac mass if € is small. We therefore proceed in two steps towards the aim of proving
a large deviations principle for X¢. In a first step we “guess” the deterministic limit around which X°¢
is concentrated for small ¢, and replace u; by its suspected limit, i.e. we approximate the law of X*.
This way we circumvent the difficulty of the dependence on the law of X — the self-interaction term —
and obtain a diffusion which is defined by means of a classical SDE. We then prove in the second step
that this diffusion is exponentially equivalent to X¢, i.e. it has the same large deviations behavior. This
involves pathwise comparisons.

3.1 Small noise asymptotics of the interaction drift

The limiting behavior of the diffusion X¢ can be guessed in the following way. As explained, the laws
u$ should tend to a Dirac measure in the small noise limit, and since ®(0) = 0 the interaction term
will vanish in the limiting equation. Therefore, the diffusion X°¢ is a small random perturbation of the
deterministic motion v, given as the solution of the deterministic equation

e =V (), o = 0, (3.2)

and the large deviations principle will describe the asymptotic deviation of X¢ from this path. Much
like in the case of gradient type systems, the dissipativity condition (2.9) guarantees non-explosion of .
Indeed, since % lell® = 2(ae, i) = 2(xby, V (1)), the derivative of |1 is negative for large values of
[¢]] by (2.9), so ¢ is bounded. In the sequel we shall write 1 (z) if we want to stress the dependence
on the initial condition.

We have to control the diffusion’s deviation from this deterministic limit on a finite time interval. An
a priori estimate is provided by the following lemma, which gives an L?-bound for this deviation. For
notational convenience, we suppress the e-dependence of the diffusion in the sequel, but keep in mind
that all processes depend on e.
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3.1 Lemma. Let Z; := Xy — ¢(xg). Then
IE || Z,||* < etd 2K,

where K is the constant introduced in Lemma 2.2. In particular, Z — 0 as ¢ — 0 in LP(IP @Xjo.1)) for
allp>1 and T > 0. This convergence is locally uniform w.r.t. the initial condition x.

Proof. By It6’s formula we have

t
0

t
1z = 2\/5/ <Zs,dWs>—2/ (20070 (s, Z, + thal(0))) ds
0
t

+ 2/0 (ZeV(Zs + s(w0)) — V(ths(w0))) ds + etd.

Since X and thus Z is square-integrable by Theorem 2.12; the stochastic integral in this equation is a
martingale. Now consider the second term containing the interaction drift 6. Let vy = IP 0oZ; ! denote
the law of Zg, and recall Assumption 2.1 ii) about the interaction function ®. The latter implies

2IE (20,65, 2+ (o)) =2 [ (5 B 8+ (o) — X.)]) wald)
= 2//<z,<1)(z —y)) vs(dy) vs(dz)
= // (z =y, ®(z —y)) vs(dy) vs(dz) > 0.

Hence by the growth condition (2.7) for V'
¢
E (2] < 2/ E (Zs,V(Zs + s(w0)) — V(s (0))) ds + etd
0
t
< 2K/ E (| Z,|? ds + etd,
0

and Gronwall’s lemma yields
IE || Z,||* < etd 2K,

This is the claimed bound. For the LP-convergence observe that this bound is independent of the initial
condition zg. Moreover, the argument of Proposition 2.11 shows that sup {IE ([ X;[|") : 0 < ¢ <
T, xg e L, 0 <e< 50} < oo holds for compact sets L and 9 > 0. This implies that Z is bounded
in LP(IP ®A(o,77) as € — 0, uniformly w.r.t. o € L. Now the LP-convergence follows from the Vitali
convergence theorem. O

3.2 Corollary. For any T > 0 we have

lim 6570 (t, ) = ®(x — Vi (x0)),

e—0

uniformly w.r.t. t € [0,T] and w.r.t. © and xo on compact subsets of RY.
Proof. The growth condition on ® and the Cauchy-Schwarz inequality yield
2 ” A\ 12
14 (t,2) = (e — (x| < B[ 1% = waleo)l (K + 1 = Xll” + 2 = walzo)l” )]

< [ 11X~ bulao) | B [(5 + llz = Xl + o = gutal) .

The first expectation on the r.h.s. of this inequality tends to zero by Lemma 3.1. Since X is bounded in
L?"(IP), uniformly w.r.t. 2o on compact sets, the claimed convergence follows. [l
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In a next step we replace the diffusion’s law in (3.1) by its limit, the Dirac measure in ¢;(xo). Before
doing so, let us introduce a slight generalization of X.

Theorem 2.12 implies that X is a time inhomogeneous Markov process. The diffusion X, starting at
time s > 0, is given as the unique solution of the stochastic integral equation

t
X=X, —|—/ [V(Xy) — 65" (u, Xo)] du + Ve(Wy — Wy), t>s.
By shifting the starting time back to the origin, this equation translates into
t
Xt-‘,-s = Xs + / [V(Xu-‘,-s) — p="o (’LL + S,Xu_;,_s)] du + \/thS, t Z 0,
0

where W? is the Brownian motion given by W = W, — Wy, which is independent of X;. Since we are
mainly interested in the law of X, we may replace W* by W.

For an initial condition & € IR? and s > 0, we denote by &% the unique solution of the equation

t
& =&+ /0 V(&) — b5 (u+s,&) du+ VeWy, t>0. (3.3)

Note that £€%%° = X, and that £ has the same law as X, given that X, = &. The interpretation
of b5%0 as an interaction drift is lost in this equation, since b*° does not depend on £,

Now recall that b0 (¢,z) = IE{®(z — X{)}, which tends to ®(z — ¢(x0)) by Corollary 3.2. This
motivates the definition of the following analogue of %%, in which u is replaced by the Dirac measure
in ¢ (zo). We denote by Y*¥ the solution of the equation

t
Y, =y+ /O V(Ya) — ®(Yy — ras (o)) du+ VEW;, > 0. (3.4)

This equation is an SDE in the classical sense, and it admits a unique strong solution by Proposition 2.5.
Furthermore, it is known that Y*¥ satisfies a large deviations principle in the space Cor = {f : [0,T] —
]Rd| f is continuous}, equipped with the topology of uniform convergence. This LDP describes the
deviations of Y*¥ from the deterministic system ¢; = V(1) — ®(pr — VYris(20)) with ¢p = y. Observe
that ¢ coincides with ¥ (x) in case y = xo, and that non-explosion of ¢ is ensured by the dissipativity
properties of V' and @ as follows. By (2.4) we have

d .
7 lor — Persl® = 2(01 — Yrgs, Dt — Yrgs) = 2{pr — Yris, V(pr) — ®(pr — Yrgs) — V(¥ups))
< 2(or — Yrgs, V(o) = V(thiys))- (3.5)

Since the last expression is negative for large values of ot — 91 y5|| by (2.8), this means that o — 14
is bounded. But % is bounded, so ¢ is also bounded.

Let por(f,g) := supg<i<r [lf — gll (f,9 € Cor) be the metric corresponding to uniform topology, and
denote by Hy1 the Cameron-Martin space of absolutely continuous functions starting in y that possess
square integrable derivatives.

3.3 Proposition. The family (YY) satisfies a large deviations principle with good rate function

T, . .
LI e = Vige) + @(or — vers(@o))|? dt, if o € HY,

(3.6)
0, otherwise .

Iof (p) = {

More precisely, for any closed set F C Cor we have

limsupelogP(Y*Y € F) < — ;ng 157 (8),
€

e—0

and for any open set G C Cor

. . S,y > S,y .
1lIEILl(§leIOgIP(Y €eG)> (;relg I5E (9)
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Proof. Let a(t,y) :=V(y) — ®(y — ¥¢), and denote by F the function that maps a path g € Cor to the
solution f of the ODE

¢
ft=$0+/ a(s, fs)ds+gs,, 0<t<T.
0

Fix g € Cor, and let R > 0 such that the deterministic trajectory ¢ (zg) as well as f = F(g) stay in
Bpr(0) up to time T'. Note that non-explosion of f is guaranteed by dissipativity of a, much like in (3.5).
Now observe that a is locally Lipschitz with constant 2K5r on Br(0), uniformly w.r.t. ¢ € [0,T]. Thus,
we have for § € Cor, f = F(§) such thatf does not leave Bz(0) up to time T

t
Hﬁ—ﬁkQKm/Hﬂ—ﬂM&Wm—Mh
0

and Gronwalls’s lemma yields

por(f: ) < por(g,g) 77,
i.e. F is continuous. Indeed, the last inequality shows that we do not have to presume that f stays in
Bpg(0), but that this is granted whenever por(g, g) is sufficiently small.

Since F' is continuous and F'(1/eW) =Y, we may invoke Schilder’s theorem and the contraction principle,
to deduce that Y satisfies a large deviations principle with rate function

S B
(o) =int {5 [ gl at: g € 1Y Flo) =0},
0
This proves the LDP for (Y*¥). O

Notice that the rate function of Y measures distances from the deterministic solution v just as in the
classical case without interaction, but the distance of ¢ from v is weighted by the interaction between
the two paths.

By means of the rate function, one can associate to Y*¥ two functions that determine the cost resp.
energy of moving between points in the geometric landscape induced by the vector field V. For ¢t > 0
the cost function

C*(y, z,t) = inf 15V (F), - R
(y ) J€Coe: fe== 0t (f) Yy

determines the asymptotic cost for the diffusion Y*¥ to move from y to z in time ¢, and the quasi-potential
s = inf C* t
Q*(y,2) = inf C*(y, 2, 1)

describes its cost of going from y to z eventually.

3.2 Large deviations principle for the self-stabilizing diffusion

We are now in a position to prove large deviations principles for ¢ and X by showing that £ and Y are
close in the sense of large deviations.

3.4 Theorem. For any ¢ > 0 let z§,&; € R? that converge to some xo € R resp. y € R as ¢ — 0.
Denote by X© the solution of (3.1) starting at xf. Let s > 0, and denote by &° the solution of (3.3)
starting in £ with time parameter s, i.e.

t
@%%AV@FWWM&@M+ﬁM,QQ (3.7)
where b= (t,z) = B[P (x — X)].

Then the diffusions (£°)e>0 satisfy on any time interval [0,T] a large deviations principle with good rate
function (3.6).
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Proof. We shall show that £ := £° is exponentially equivalent to Y := Y*®¥ as defined by (3.4), which
has the desired rate function, i.e. we prove that for any § > 0 we have

limsupelogP(por(§,Y) > 0) = —oc. (3.8)
e—0
Without loss of generality, we may choose R > 0 such that x§,y € Br(0) and that ¢, (x¢) does not leave
Bgr(0) up to time s + T, and denote by op the first time at which £ or Y exit from Bgr(0). Then for
t<opr

t t
e =Yill < o=l + [ IV(E) = VI dut [ o5t 5.6 = B~ (o)) du (39

The first integral satisfies

t t
/ V(&) = V() du < Kn / 160 — Yull du, < o,
0 0

due to the local Lipschitz assumption. Let us decompose the second integral. We have

b0 (4 5, 60) — B(Va — ¢u+s($0))H =

b (w5, 60) — D€ — Dt (25))

12§ — Yuts(25)) — P(Eu — Yuts(@o))
+ 1P (€u — Yuts(0)) — P(Yu — Yuts(z0))| -

Bounds for the second and third term in this decomposition are easily derived. The last one is seen to
be bounded by Kag ||£u — Yu||, since £, Y as well as ¢ are in Bg(0) before time or A T. For the second
term we also use the Lipschitz condition to deduce that

[@(&w = uts(25)) = ®(Eu = Yuts (@)l < Kar [Yurs(25) = Puss(@o)ll-

As a consequence of the flow property for ¢ this bound approaches 0 as ¢ — 0 uniformly w.r.t. u € [0, T].

By combining these bounds and applying Gronwall’s lemma, we find that

t
&= Yill < exp {2Hant} (60 = vl + Kon | (@) = (ool d

/
0

for t < ogr. Since £ is bounded before o the r.h.s. of this inequality tends to zero by Corollary 3.2.

bt 5, 60) = B(Ew — Yurs(ad))| du)  (3.10)

The exponential equivalence follows from the LDP for Y as follows. Fix § > 0, and choose ¢ > 0 such
that the r.h.s. of (3.10) is smaller than ¢ for e < eg. Then || — Y;|| > J implies that at least one of &
or Y; is not in Br(0), and if §; ¢ Br(0) then Y; ¢ Br/2(0) if § is small enough. Thus we can bound the
distance of £ and Y by an exit probability of Y. For [ > 0 let 7; denote the diffusion Y’s time of first
exit from B;(0). Then, by Proposition 3.3,

limsupelogP (por(€,Y) >6) < limsupeloglP(rgr/ < T)
e—0

e—0

< —inf{C°(y,z,t): |2| > &, 0<t<T} (3.11)

The latter expression approaches —oco as R — oo. O

Theorem 3.4 allows us to deduce two important corollaries. A particular choice of parameters yields an
LDP for X, and the e-dependence of the initial conditions permits us to conclude that the LDP holds
uniformly on compact subsets, a fact that is crucial for the proof of an exit law in the following section.
The arguments can be found in [7].

Let IP,, (X € -) denote the law of the diffusion X starting at zo € R”.
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3.5 Corollary. Let L C R? be a compact set.

For any closed set F' C Cyr we have

limsup elog sup P, (X € F) < — inf inf 197%°(¢),
€—>0p gmge% 0( )— EOELQBEF oT ((b)

and for any open set G C Cor

A . > _ : 0,z0 .
hgl_%lfslogwlonefL P, (X eG)> msUuEpL (;Ielf I ° ()

Proof. Choosing zg = &5 and s = 0 implies £ = X* in Theorem 3.4, which shows that X satisfies an
LDP with rate function Ig; . Furthermore, this LDP allows for e-dependent initial conditions. This
implies the uniformity of the LDP, as pointed out in the proofs of Theorem 5.6.12 and Corollary 5.6.15
in [7]. Indeed, the e-dependence yields for all z5 € IR*

limsup eloglP, (X € F) < — inf Igﬁ”(@a
e—0,y—xo l PEF

for otherwise one could find sequences e, > 0 and y,, € R? such that &, — 0, y, — zo and

limsupe,logP,, (X € F) > —di)ng 1397 ().
€

n—oo

But this contradicts the LDP.

Now the uniformity of the upper large deviations bound follows exactly as demonstrated in the proof of
Corollary 5.6.15 in [7]. The lower bound is treated similarly. O

The next corollary is just a consequence of the e-dependent initial conditions in the LDP for &.

3.6 Corollary. Let L C R? be a compact set.

For any closed set F' C Cyr we have

limsupelog sup IP(£>%° € F) < — inf inf I77°(9),
wsupelog sup P(E € F) < — fnf i 157°(0)

and for any open set G C Cor

liminfelog inf IP(£5™ € G) > — inf 157 ().
iminfelog inf (€ ) > sup inf or (¢)

3.3 Exponential approximations under stability assumptions

The aim of this subsection is to exploit the fact that the inhomogeneity of the diffusion Y*¥ is weak
in the sense that its drift depends on time only through 4 s(xo). If the dynamical system 1/1 = V()
admits an asymptotically stable fixed point x...... that attracts xg, then the drift of Y*¥ becomes almost
autonomous for large times, which in turn may be used to estimate large deviations probabilities for
&Y. We make the following assumption. It will also be in force in Section 4, where it will keep us from
formulating results on exits from domains with boundaries containing critical points of DV, in particular
saddle points in the potential case.

3.7 Assumption.

i) Stability: there exists a stable equilibrium point . ... € R? of the dynamical system

)=V ().
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it) Convezity: the geometry induced by the vector field V is convez, i.e. the condition (2.6) for V
holds globally:
(h, DV (z)h) < —Ky (3.12)

for h e R? s.t. ||h|| =1 and z € R,
Under this assumption it is natural to consider the limiting time homogeneous diffusion Y**¥ defined by
dY,° = V(Y X)dt — DY, — wune)dt + VAW, Y5 =y, (3.13)
3.8 Lemma. Let L C IR? be compact, and assume that T...,. attracts all y € L, i.e.
Jim y(y) = Ty € L.
Then Y°*Y is an exponentially good approrimation of Y*Y, i.e. for any d > 0 we have

lim limsupelog sup IP(por (Y'Y, YY) > §) = —cc.

T30 -0 yeL,s>r
Proof. We have
t t
e =Y [ V) =V du+ [ = ) - R = )
0 0

Let oY be the first time at which Y*¥ or Y°*¥ exits from Bg(0). For t < ¢, we may use the Lipschitz
property of ® and V, to find a constant cg > 0 s.t.

t
[V =Y < CR/O VoY = Y2 ldu + crT por (Vst- (Y), Toranie)-

By assumption the second term converges to 0 as s — oo, uniformly with respect to y € L since the flow is
continuous with respect to the initial data. Hence, by Gronwall’s lemma there exists some r = (R, ) > 0
such that for s > r

sup sup [[¥Y - V2| < 6/2.

yEL 0<t<oyY
We deduce that

P(por(Y*¥,Y>®)>6/2)<P(r%,,<T) Vs>r, yeL,

R/2 =
where for [ > 0 7/ denotes the first exit time of Y°>¥ from B;(0). Sending r, R — oo and appealing to
the uniform LDP for Y °°¥ finishes the proof, much as the proof of Theorem 3.4. O

This exponential closeness of Y°¥ and Y*®¥ carries over to £*Y under the aforementioned stability and
convexity assumption, which enables us to sharpen the exponential equivalence proved in Theorem 3.4.
In order to establish this improvement, we need a preparatory lemma that strengthens Corollary 3.2 to
uniform convergence over the whole time axis. This uniformity is of crucial importance for the proof of
an exit law in the next section and depends substantially on the strong convexity assumption (3.12).

3.9 Lemma. We have
lim b5 (¢, ) = ®(z — e (20)),

e—0

uniformly w.r.t. t >0 and w.r.t. x and xo on compact subsets of RY.

Proof. Let f(t) := IE(|| Z||?), where Z, = X; — py(0). In the proof of Lemma 3.1 we have seen that

F1(#) <2 [(Z0, V(Zi + ¥i(20)) = V(¥(20)))] +ed < —2Kv B([| Ze]|*) + ed = —2Ky f(t) + ed.

This means that {t > 0: f'(t) <0} D {t>0: f(t) > 2%[‘/}. Recalling that f(0) = 0, this allows
us to conclude that f is bounded by Qj(dv

argument. (|

. Now an appeal to the proof of Corollary 3.2 finishes the
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3.10 Proposition. Let L C R be compact, and assume that x..... attracts all y € L. Then YV is
an exponentially good approximation of Y, i.e. for any 6 > 0 we have

lim limsupelog sup IP(por (™Y, YY) > ) = —c0.

T—=o0 0 yEL,s>r

Proof. Recall the proof of Theorem 3.4. For y € L and s > 0 we have

t
1€ = Y2V < exp {2Kagt} /0 16590 (u + 5, €4) — ®(Eu — Yurs(w0))]| du (3.14)

for t < o%,", which denotes the first time that £ or Y*¥ exits from Br(0). By Lemma 3.9, the integrand
on the r.h.s. converges to zero as ¢ — 0, uniformly w.r.t. s > 0. Therefore, if we fix § > 0, we may
choose R = R(0) sufficiently large and 9 > 0 such that for £ < g9, and all s > 0

P(por (7Y, Y™Y) > 6) < P(rg), <T) <P(rp) <T)+P(por (Y™, YY) > R/4),

where for [ > 0,0 < s < o0 Tf’y denotes the first exit time of the diffusion Y*¥ from the ball B;(0). By
the uniform LDP for Y°>¥ and Lemma 3.8 the assertion follows. O

4 The exit problem

As a consequence of the large deviations principle, the trajectories of the self-stabilizing diffusion are
attracted to the deterministic dynamical system w = V(v) as noise tends to 0. The probabilities of
deviating from v are exponentially small in €, and the diffusion will certainly exit from a domain within
a certain time interval if the deterministic path ¢ exits. The problem of diffusion exit involves an analysis
for the rare event that the diffusion leaves the domain although the deterministic path stays inside, i.e.
it is concerned with an exit which is triggered by noise only. Clearly, the time of such an exit should
increase as the noise intensity tends to zero. In this section we shall derive the precise large deviations
asymptotics of such exit times, i.e. we shall give an analogue of the well known Kramers-Eyring law for
time homogeneous diffusions.

Let us briefly recall this law, a detailed presentation of which may be found in section 5.7 of [7]. For
further classical results about the exit problem we refer to [8], [5], [6] and [17].

A Brownian particle of intensity ¢ that wanders in a geometric landscape given by a potential U is
mathematically described by the classical time-homogeneous SDE

dZf = —VU(Z{)dt + edWy,  Z§ = z0 € R,

If 2* is a stable fixed point of the system @ = —VU(z) that attracts the initial condition o and 7¢
denotes the exit time from the domain of attraction of z*, then the asymptotics of 7¢ is described by the
following two relations:

lirnoalogIE(Ta) =U, (4.1)
£E—

lim P U9/ < 75 < T+D/E) =1 v5 > 0. (4.2)
E—

Here U denotes the energy required to exit from the domain of attraction of #*. This law may roughly
be paraphrased by saying that 7° behaves like exp % as € — 0.

Let us now return to the self-stabilizing diffusion X¢, defined by (3.1). Intuitively, exit times should
increase compared to the classical case due to self-stabilization and the inertia it entails. We shall show
that this is indeed the case, and prove a synonym of (4.1) and (4.2) for the self-stabilizing diffusion. Our
approach follows the presentation in [7].
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Let D be an open bounded domain in IR? in which X© starts, i.e. g € D, and denote by
7p =inf{t >0: X7 € 0D}
the first exit time from D. We make the following stability assumptions about D.

4.1 Assumption.

i) The unique equilibrium point in D of the dynamical system
b = V(¢hr) (4.3)

is stable and given by X .. € D. As before, 1i(xo) denotes the solution starting in xo. We assume
that lim;_. wt (Io) = Tstable

it) The solutions of
(ﬁt =V(t) — ®(Pt — Teranie) (4.4)
satisfy
oo €D — ¢ € DVt >0 and tliglo Ot = Toraplos

and all trajectories starting at the boundary 0D converge to the stable point Ty

Observe that for zo € D, ¢ (zo) stays in the domain D at all times since it satisfies (4.4).

The description of the exponential rate for the exit time of It6 diffusions with homogeneous coefficients
was first proved by Freidlin and Wentzell via an exploitation of the strong Markov property. The self-
stabilizing diffusion X¢ is also Markovian, but it is inhomogeneous, which makes a direct application of
the Markov property difficult. However, the inhomogeneity is weak under the stability Assumption 4.1.
It implies that the law of X; converges as time tends to infinity, and large deviations probabilites for
X ¢ may be approximated by those of Y*° in the sense of Proposition 3.10. Since Y*° is defined in terms
of an autonomous SDE, its exit behavior is accessible through classical results. The rate function that
describes the LDP for Y*° is given by

T, . 2 .
155 () = 5 Jo o =Vier) +@(pr — Tarne) |~ dt, if o € HJ,
or \¥

0, otherwise .
The corresponding cost function and quasi potential are defined in an obvious way and denoted by C*°
and Q°°, respectively. The minimal energy required to connect the stable equilibrium point z,,,,. to the
boundary of the domain is assumed to be finite, i.e.

Qo = inf Q™ (Taparie; 2) < 0.
z

(4.5)

The following two theorems state our main result about the exponential rate of the exit time and the
exit location.

4.1 Theorem. For all xo € D and all n > 0, we have
limsup e log {1 - 1P, (e@w_")/‘5 <7p < €(§°°+77)/8)} < -n/2, (4.6)
e—0

and
111% elogE,, (75) = Q- (4.7
E—

4.2 Theorem. If N C 9D is a closed set satisfying inf .c v Q™ (Z.rarie, 2) > @Oo, then it does not see the
exit point: for any xg € D

lim P, (X7 € N)=0.

e—0

The rest of this section is devoted to the proof of these two theorems. In the subsequent section, these
results are illustrated by examples which show that the attraction part of the drift term in a diffusion
may completely change the behavior of the paths, i.e. the self-stabilizing diffusion stays in the domain
for a longer time than the classical one, and it typically exits at a different place.
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4.1 Enlargement of the domain

The self-stabilizing diffusion lives in the open, bounded domain D which is assumed to fulfill the pre-
viously stated stability conditions. In order to derive upper and lower bounds of exit probabilities, we
need to construct an enlargement of D that still enjoys the stability properties of Assumption 4.1 ii).
This is possible because the family of solutions to the dynamical system (4.4) defines a continuous flow.

For § > 0 we denote by D? := {y € R? : dist(y, D) < &} the open d-neighborhood of D. The flow ¢
is continuous, hence uniformly continuous on D due to boundedness of D, and since the vector field is
locally Lipschitz. Hence, if 6 is small enough, the trajectories ¢;(y) converge to ... for y € D’ i.e.
for each neighborhood V C D of ... there exists some T' > 0 such that for y € D? we have ¢; (y) eV
for all £ > T. Moreover, the joint continuity of the flow implies that, if we fix ¢ > 0, we may choose
d = 0(c) > 0 such that

sup { dist(¢:(y), D) : t € [0,T], y€ D’} < c.

Let
O ={yeR’: sup dist(6:(y), D) <c, dr(y) € V}.
te[0,T]
Then ©? is a bounded open set which contains D? and satisfies Assumption 4.1 ii). Indeed, if § is small
enough, the boundary of ©° is not a characteristic boundary, and Nso0° = D.

4.2 Proof of the upper bound for the exit time

For the proof of the two main results, we successively proceed in several steps and establish a series
of preparatory estimates that shall be combined afterwards. In this subsection, we concentrate on the
upper bound for the exit time from D, and establish inequalities for the probability of exceeding this
bound and for the mean exit time.

In the sequel, we denote by IP, , the law of the diffusion £*¥, defined by (3.3). Recall that by the
results of the previous section, £% Y satisfies a large deviations principle with rate function 7°¥. The
following continuity property of the associated cost function is the analogue of Lemma 5.7.8 in [7] for
this inhomogeneous diffusion. The proof is omitted.

4.3 Lemma. For any § > 0 and s € [0,00), there exists o > 0 such that

sup inf C*(x,y,t) <d (48)
2,y€By(ztapie) t€[1051]

and

sup inf C*(z,y,t) <9, (4.9)
()T teD0.1]

where T' = {(x,y) : inf,cop(||ly — 2| + | — z]|) < o}.

Let us now present two preliminary lemmas on exit times of Y. In slight abuse of notation, we denote
exit times of £* ¥ also by 7, which could formally be justified by assuming to look solely at the coordinate
process on path space and switching between measures instead of processes. On the other hand, this
notation is convenient when having in mind that £*¥ describes the law of X¢ restarted at time s, and
that X° may be recovered from £* Y for certain parameters.

4.4 Lemma. For any n > 0 and o > 0 small enough, there exist Ty > 0, so > 0 and €9 > 0 such that

inf P ,(tH < Toy) > e~ @Qctm/e for all e <eg and s > sg.
YyE By (Tstable)
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Proof. Let p be given according to Lemma 4.3. The corresponding result for the time homogeneous
diffusion Y°*¥ is well known (see [7], Lemma 5.7.18), and will be carried over to £€* ¥ using the exponential
approximation of Proposition 3.10. Let P, , denote the law of Y°¥. The drift of Y°*¥ is locally
Lipschitz by the assumptions on V' and ®, and we may assume w.l.o.g. that it is even globally Lipschitz.
Otherwise we change the drift outside a large domain containing D.

If § > 0 is small enough such that the enlarged domain O? satisfies Assumption 4.1 ii), Lemma 5.7.18 in
[7] implies the existence of €; and Tj such that

f P,y (r5s < To) > e~ @<+1/3/% for all e < ;. (4.10)
YyE By (Tstable)

=4 -
Here Q. denotes the minimal energy

5 .
Qoo = zenalgs QOO (xstablcv Z)

The conginuity of the cost function carries over to the quasi-potential, i.e. there exists some dg > 0 such
that |Q., — Q.| < n/3 for § < .
Now let us link the exit probabilities of Y°*¥ and £*¥. We have for s > 0

Py, ,(tp <Tp) > IP({&>Y exits from D before To} N {po 1, (7Y, YY) < })
> P, y(1ps <To) = P(po,1, (77, V) > 6). (4.11)

Moreover, by the exponential approximation we may find €2 > 0 and sg > 0 such that

— 6
sup  IP(pog, (€59, Y®) > §) < e Quet1/2/e s > 50 e < ey,
yGBQ(mstable)

Since D° C O, we deduce that for ¢ < ey =¢; Aey and s > sg

inf P

(15, < Tp) > e~ @utn/3)/e _ o= @utn/2)/e > o~ @utn)/e,
yeBQ(zstable) - o o

5 Y

O

By similar arguments, we prove the exponential smallness of the probability of too long exit times. Let
Y,=inf{t >0: &Y € By(Tea.) UOD}, where p is small enough such that B,(Z..p.) is contained in
the domain D.

4.5 Lemma. For any o > 0 and K > 0 there exist g > 0, T1 > 0 and r > 0 such that

sup P, (8, > 1) <e K5 vt > 1.
yeD,s>r

Proof. As before, we use the fact that a similar result is already known for Y°*¥. For § > 0 small
enough, let
Y0 =inf{t > 0: Y, € By s(orarne) UOO°}.

By Lemma 5.7.19 in [7], there exist T} > 0 and €; > 0 such that

sup IPOO7y(E‘Z >1) < e Kot >T e <e.
yeD

Now the assertion follows from

sup IP, (2, > T1) < sup IPoo,y(E‘z, > Ty) + sup IP(po,m, (Y, YY) > 0),
yeD yeD yeD

since the last term is exponentially negligible by Proposition 3.10. (|
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The previous two lemmas contain the essential large deviations bounds required for the proof of the
following upper bound for the exit time of X°©.

4.6 Proposition. For all xo € D and n > 0 we have

limsupelog Py, (75 > e@mJ“")/a) < —n/2, (4.12)

e—0

and

limsupelogE,, [TE} < Q

e—0

(4.13)

[oohs

Proof. The proof consists of a careful modification of the arguments used in Theorem 5.7.11 in [7]. By
Lemma 4.4 and Lemma 4.5, there exist T = To+ Ty > 0,0 >0 and rg > 0 such that for T > T e<eo
and r > ro we have

T : - € < > ” < i s e <L )
dr = ylngIP w(p <T) = ylng]P 'Y (EQ > Tl) yeBQ(migile),s»IP Y (7D = TO) (4.14)
Qs +1/2
>exp{ - Z n/ } =1 q7.

Moreover, by the Markov property of £*Y, we see that for £k € IN

P,, (5 > 2(k + 1)T)

[1-TP,, (75 <2(k+ 1)T | 7p > 2kT)]| Py, (5 > 2kT)
1- inf Payry (th < 27)| Py, (15 > 2kT)

IN

IN

(1- q%T) P, (1) > 2kT),

which by induction yields
k—1

P, (t5 > 2kT) < [ (1-a7). (4.15)
=0
Let us estimate each term of the product separately. We have

1-— qle = sup Pai7, (TD > 2T) < sup Poir,y (TD > T) sup IP 254 1)1,y (TD > T)
yeD [S yeD

< sup Poiry (15 > T).
yeD

By choosing T large enough, we may replace the product in (4.15) by a power. Indeed, for T > max(f, 70)
we have (2i + 1)T' > r for all ¢ € IN, which by (4.14) results in the uniform upper bound

1_q21T S 1_ (21+1) < 1_(]'%0

By plugging this into (4.15), we obtain a “geometric” upper bound for the expected exit time, namely

[e'S) oo k-1

E,, [75] < 2T (14 supP,, (15 >2kT)| < 27 [1+ > [[ (1-a7)
k=1 V€D k=1 i=0
corfieSaoar| -2
k=1 47

This proves the claimed asymptotics of the expected exit time. Furthermore, an application of Cheby-
chev’s inequality shows that

_ —(Quet
o (7_1% > e(Qm+n)/€) < IE}_:E0 [Tﬂ < or e~ (Qoctn)/e - 6777/257
e(Quotm) /e ar
which is the asserted upper bound of the exit probability. [l
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4.3 Proof of the lower bound for the exit time

In order to establish the lower bound of the exit time, we prove a preliminary lemma which estimates
the probability to exit from the domain D\ By (Z.ia.) at the boundary of D. This probability is seen to
be exponentially small since the diffusion is attracted to the stable equilibrium point. Let us denote by
S, the boundary of B, (%), and recall the definition of the stopping time X,.

4.7 Lemma. For any closed set N C 0D and n > 0, there exist €9 > 0, g9 > 0 and ro > 0 such that
elog sup TP (g;y € N) < —inf Q% (Zwabie; 2) + 1
YESa,, 82T ¢ zEN

foralle <eg, r>1r9 and 0 < 0g.

Proof. For § > 0 we define a subset S° of D? by setting
S =D\ {y e R?: dist(y, N) < 6}.

Furthermore, let
N =08 N {y e R?: dist(y, N) < d}.

S contains the stable equilibrium point .., and as such it is
unique in S° if § is small enough.

The proof of Lemma 5.7.19 and Lemma 5.7.23 in [7] can be
adapted to the domain S°, since an exit of the limiting diffusion
Y from the domain ©° defined in section 4.1 always requires an
exit from S°. Hence, there exist 1 > 0 and o; > 0 such that

elog sup Po y (Vi €N?) < — h}\fm Q™ (Tovavier 2) + o
@ ze

YyESa2, 2

for ¢ < ey and o < g1, where E‘z, denotes the first exit time from the domain S? \ By(Zetarie). By the
continuity of the quasi-potential, we have

. n
— inf Q% (Zaeunes 2) + 1
zleI}\féQ (Terapres 2) 5 < — nf

< — inf Qoo(xstablc5 Z) +n

if 6 > 0 is small enough. Therefore, it is sufficient to link the result about the limiting diffusion to the
corresponding statement dealing with £¥. By Lemma 4.5, we can find 73 > 0, &1 > 0 and r; > 0 such
that

elog sup Py, (8, >T1) < — inf Q®(Terume, 2) + U Ve <er, 7>11. (4.16)
YESay, s>T zeN 2

If 3, <T1 and por, (§¥,Y>) <4, then {5 € N} is contained in {Y3 € N°}. Thus,
P (&5 eN) < P (&7 €N, By <Th) +1P (3, > Th)
P (Y € NO) 4+ P (por (659, V™) > 8) + Py (S, > Th).

IN

By (4.16) and Proposition 3.10, the logarithmic asymptotics of the sum on the r.h.s. is dominated by
the first term, i.e. the lemma is established. 0

We are now in a position to establish the lower bound for the exit time which complements Proposition 4.6
and completes the proof of Theorem 4.1.

4.8 Proposition. There exists ng > 0 such that for any n < ng

limsupelog Py, [t < e(QOO_")/E} < —n/2 (4.17)
e—0
and
limiglfalogIEIO 5] > Q- (4.18)
E—
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Proof. In a first step we apply Lemma 4.7 and an adaptation of Lemma 5.7.23 in [7]. The latter explains
that the behavior of an It6 diffusion on small time intervals is similar to the behavior of the martingale
part, which in our situation is simply given by /e W;. We find ro > 0, T' > 0 and g¢ > 0 such that for
e <egg

sup P (g;gy c BD) < ef@xﬁn/z)/s,

YES2,,8>10
sup ]P( sup [|&Y —y|l > 9) < e~ @Qx—n/2)/¢,
yeD, s>ro 0<t<T

In the sequel, we shall proceed as follows. Firstly, we wait for a
large period of time 7; until the diffusion becomes “sufficiently
homogeneous”, which is possible thanks to the stability assump-
tion. Since ... attracts all solutions of the deterministic

system, we may find r; > ro such that ¢, (z0) € B,(Zuan.) for @A
r > ry. Secondly, after time r1, we employ the usual arguments II D

for homogeneous diffusions. Following [7], we recursively define
two sequences of stopping times that shall serve to track the
diffusion’s excursions between the small ball B,(z.....) around
the equilibrium point and the larger sphere So, = 0Ba2y(Zaraiie ),
before it finally exits from the domain D.

Set Y9 = r1, and for m > 0 let
Tm = inf{t > 9, : X; € B,UOD},
and
19m+1 = inf{t > Tm - Xf S SQQ}.

Let us decompose the event {75, < kT + r1}. We have

Py, (75 < kT +711) < Py ({75 < i} U{XF, ¢ Bog(aane)}) +  sup Py (1 <KT).  (4.19)
YES2,,8>T1

The first probability on the r.h.s. of this inequality tends to 0 as € — 0. Indeed, by the large deviations
principle for X¢ on the time interval [0, 7], there exist 79 > 0 and €5 > 0 such that

elog P, ({7'1% <rju {erl ¢ B2g($stab1c)}) < —n/2

for € < g9 and n < ny. For the second term in (4.19), we can observe two different cases: either the
diffusion exits from D during the first k exits from D \ B, (Z.ap.), Or the minimal time spent between
two consecutive exits is smaller than 7. This reasoning leads to the bound

k
Py, y(rh SKT) < D Poy (th = Tn) +Puy ( min (W = 7a1) <T).
m=0 sms

Let us now link these events to the probabilities presented at the beginning of the proof. We have

sup Py y(7h =7m) < sup Py (&7 € D),
YES2g, 521 Y€, 8210

and

sup Py y((m —Tm—1) <T) < sup [P ,( sup 1€ =yl > o),
YES2,, 8211 yESa,, s>10 0<t<T

which yields the bound

sup P, ,(th < kT) < (2k + 1)~ (@ec—n/2)/e
YES2,,8>T1
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Thus, by choosing k = | (e(@~~7/¢ —r1)/T| + 1, we obtain from (4.19)
Py, (75 < e@m*n)/s) < e/ 5T len/2e

i.e. (4.17) holds. Moreover, by using Chebychev’s inequality, we obtain the claimed lower bound for the
expected exit time. Indeed, we have

E,, (15) > e( —n)/ff(l — P, (75 < e@w—n)/a)) > e( —77)/8(1 — (1457~ )e—n/%),

which establishes (4.18). O

We end this section with the proof of Theorem 4.2 about the exit location.

Proof of Theorem 4.2. We use arguments similar to the ones of the preceding proof. Let
@oo( ): 1nf Q ( stable7 )7

and assume w.lo.g. that Q. < Q. (N) < co. Otherwise, we may replace Q_ (NN) in the following by
some constant larger than Q.. As in the preceding proof, we may choose T > 0, o > 0 and £ > 0 such
that _
sup Py ;,Qy € 0ON) < e~ Qe (N)=n/2)/e e < ¢
YES2,, 8210

sup Py, ( sup [|&Y =yl > o) < e~ @ (N)=n/2)/e ¢ < &p.
yeD,s>rg 0<t<T

It suffices to study the event A = {7, < kT +ro} N{X7. € N} for positive integers k. We see that

P (A) < Poy (X7, & Bog(@awame)) + sup Py (7 < kT)

YES2,,8>T0
k
< by, (er(, ¢ Bap(Tawanie)) + Z IPsyy(TB = Tm, filgy €N)
m=0

+ P,y ( min (I —7m-1) <T)
< Puy(XE, ¢ Bop(Tuume)) + (2k + 1)e~ @M =0/2)/2,
The choice k = | (e@x®M)=m/e _ 1) /T| +1 yields
P, (A) < TPy (X5, ¢ Bog(@uame)) + 5T e %,

This implies that P, (75, < e@oo(N)*”)/E, XfB € N) — 0 as ¢ — 0. Now choose 1 small enough such

that Q. (N)—n > Q. +n. Then Proposition 4.6 states that the exit time of the domain D is smaller than
e(Qtm/e with probability close to 1. The combination of these two results implies P, (X e €N )—0

as ¢ — 0. O

5 The gradient case: examples

The structural assumption about ®, namely its rotational invariance as stated in (2.4), implies that ®
is always a potential gradient. In fact, this assumption means that ® is the gradient of the positive

potential
[l
Az) = o(u)du

0
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In this section, we make the additional assumption that the second drift component given by the vector
field V' is also a potential gradient, which brings us back to the very classical situation of gradient
type time homogeneous It6 diffusions. In this situation, quasi potentials and exponential exit rates may
be computed rather explicitly and allow for a good illustration of the effect of self-stabilization on the
asymptotics of exit times.

We assume from now on that V' = —VU is the gradient of a potential U on IR?. Then the drift of the
limiting diffusion Y'*° defined by (3.13) is also a potential gradient, that is

b(x) =V (z) — ®(x — Tyare) = — V(U (2) + AT — Toravie))-

A simple consequence of Theorem 3.1 in [8] allows one to compute the quasi-potential explicitly in this
setting.

5.1 Lemma. Assume that V = —NVU. Then for any z € D,
Qoo(xstable7 Z) = 2(U(2) - U(‘Tstable) + A(Z - xstable))'

In particular,

Qoo = Zie%fD 2(U(2) - U(xstable) + A(Z - ‘Tstable))'

Observe that the exit time for the self-stabilizing diffusion is strictly larger than that of the classical
diffusion defined by
dz; =V (Z7)dt + \/edWy, Z§ = xo.

Indeed, by the theory of Freidlin and Wentzell,

lim elogIE,, (75,(Z°9)) = inf 2(U(2) — U(Zuame)) < Qoo = lim elog IE,, (75 (X)).
e—0 z2€0D e—0

The exit problem is in fact completely different if we compare the diffusions with or without self-
attraction. We have already seen that the exponential rate is larger in the attraction case. Let us
next see by some examples that the exit location may change due to self-stabilization.

5.1 The general one-dimensional case

In this subsection we confine ourselves to one-dimensional self-stabilizing diffusions. In dimension one,
the structural assumptions concerning ® and V are always granted, and we may study the influence of
self-stabilization on exit laws in a general setting.

Let a < 0 < b, and assume for simplicity that the unique stable equilibrium point is the origin 0. Denote
by U(z) = — [, V(u)du the potential that induces the drift V. As seen before, the interaction drift is

the gradient of the potential A(x) = fom‘ ®(u)du. Since we are in the gradient situation, the exponential
rate for the mean exit time from the interval [a,b] can be computed explicitly.

If we denote by 7, (X¢) =inf{t > 0: X = z} the first passage time of the level = for the process X¢ and
Tr = Ta ATy, then the exit law of the classical diffusion Z* (i.e. without self-stabilization) is described by

lim 1Py (e(Q0 ~"/¢ < 77(Z°) < (@ Fm/e) = 1,

e—0

and
1in%)510g]E0(TI(Z5)) = Qg
E—

where Q3° = 2min(U(a),U(b)). Moreover, if we assume that U(a) < U(b), then IPo(77(Z°) = 7,(Z°)) —
lase—0.

The picture changes completely if we introduce self-stabilization. The quasi-potential becomes

QT =2min(U(a) + A(a), U(b) + A(b)) > Q7°,
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so the mean exit time of X¢ from the interval I is strictly larger compared to that of Z¢. This result
corresponds to what intuition suggests: the process needs more work and consequently more time to
exit from a domain if it is attracted by some law concentrated around the stable equilibrium point.
Furthermore, if a and b satisfy

A(b) — Ala) <Ula) = U(b),

we observe that Po(77(X¢) = 7,(X¢)) — 1, i.e. the diffusion exits the interval at the point b. Thus, we
observe the somehow surprising behavior that self-stabilization changes the exit location from the left to
the right endpoint of the interval.

5.2 An example in the plane

In this subsection, we give another explicit example in dimension two, in order to illustrate changes of
exit locations in more detail.

Let V = —VU, where
Ulz,y) = 62* + §3°,

and let us examine the exit problem for the elliptic
domain

D={(z,y) e R*: 2® + 1y* < 1}.

The unique stable equilibrium point is the origin

Lstable — 0'

The asymptotic mean exit time of the diffusion Z¢ Figure 1: Potentials U (left picture) and U + A (right
starting in 0 is given by lim e log o (r5,(2%)) = 4, picture).

since the minimum of the potential on dD is reached if y = £2 and z = 0. Let us now focus on its exit
location, and denote N, ,y = 0D N B,y((z,y)). The diffusion exits asymptotically in the neighborhood

N(o,2) with probability close to 1/2 and in the neighborhood N, _9) with the same probability.
Now we look how self-stabilization changes the pic-
ture. For the interaction drift we choose

@(m,y) _ VA(:E,y), with A(x,y) _ 2:5‘2 + 2y2- Exit location of the

classical diffusion
Firstly, the self-stabilizing diffusion X°¢ starting
in 0 needs more time to exit from D, namely
liIr(l)ElogIEo(TfD(Xs)) = 16. More surprisingly,
E—

Exit location of the

self-stabilizing diffusion

though, the exit location is completely different. The

diffusion exits asymptotically with probability close to 1/2 in the neighborhoods N(_; ) and N g),
respectively.
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