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t the random position of the partileat time t. It is governed by the d-dimensional SDE
dXε

t = V (Xε
t ) dt−

∫

IRd

Φ(Xε
t − x) duε

t (x) dt+
√
εdWt. (1.1)In this equation, V denotes a vetor �eld on IRd, whih we think of as representing a potential gradient,the �rst soure of foring. Without the other two soures the motion of the partile would just amountto the dynamial system given by the ODE

ẋ = V (x). (1.2)1



The small stohasti perturbation by Brownian noise W of intensity ε aounts for the seond soureof foring. It is responsible for random behavior of Xε, and allows for transitions between otherwiseenergetially unreahable domains of attration. The third foring involving the proess' own law uε
tintrodues a feature that we all self-stabilization. The distane between the partile's instantaneousposition Xε

t and a �xed point x in state spae is weighed by means of a so-alled interation funtion Φand integrated in x against the law of Xε
t itself. This e�etive additional drift an be seen as a measurefor the average attrative fore exerted on the partile by an independent opy of itself through theattration potential Φ. In e�et, this foring makes the di�usion inertial and stabilizes its motion inertain regions of the state spae.Equations of the type (1.1) are obtained as meso-sopi limits of miro-systems of interating partiles,as the number of partiles in an ensemble of idential ones tends to in�nity, and subjet to the same�rst two soures of foring, i.e. the fore �eld V and the Brownian noise of intensity ε. Suppose we aregiven an interation funtion Φ, i.e. for any two partiles loated at x and y in state spae the value

Φ(x−y) expresses the fore of mutual attration. This attration an for instane be thought of as beinggenerated by eletromagneti e�ets. The dynamis of a partile system onsisting of N suh partilesis desribed by the stohasti di�erential equation
dX i,N

t = V (X i,N
t ) dt− 1

N

N∑

j=1

Φ(X i,N
t −Xj,N

t ) dt+
√
ε dW i

t , i = 1, . . . , N,

X i,N
0 = xi

0. (1.3)Here theW i are independent Brownian motions. The self-stabilizing e�et we are interested in originatesin the global ation of the system on the individual partile motion in the large partile limit N → ∞.Under suitable assumptions, in this limit the empirial measures 1
N

∑N
j=1 δXj,N

t
an be shown to onvergeto some law uε

t for eah �xed time and noise intensity, and eah individual partile's motion onvergesin probability to the solution of the di�usion equation
dX i

t = V (X i
t) dt−

∫

IRd

Φ(X i
t − x) duε

t (x) dt +
√
εdW i

t . (1.4)The aim of this paper is to extend the well known Kramers-Eyring law of exit from domains withnon-ritial boundaries by partiles di�using in potential landsapes with small Gaussian noise to sys-tems (1.1) whih inlude the desribed self-stabilization e�et. In the potential gradient ase withoutinteration, in whih the individual partile's motion is interpreted by the solution trajetories Zε of theSDE
dZε

t = −∇U(Zε
t ) dt+

√
εdWt, (1.5)Kramers' law states that, in the small noise limit ε→ 0, the asymptoti exit time of Zε from a potentialwell of height H is of the order exp{ 2H

ε }. See the beginning of setion 4 for a preise formulationof this. We derive a similar statement for self-stabilizing di�usions. In partiular we examine howself-stabilization adds inertia to the individual partile's motion, delaying exit times from domains ofattration and altering exit loations. Mathematially, the natural framework for suh an analysis is largedeviations theory for di�usions. Our key ingredient for an understanding of the small noise asymptotisof the exit times proves to be a large deviations priniple for self-stabilizing di�usions (1.1). In thepotential gradient ase, the rate funtion in the large deviations priniple just minimizes the energyneeded to travel in the potential landsape. If the partile undergoes self-stabilization, energy has to beminimized in a landsape whih additionally takes into aount the potential of an attrative fore thatdepends on the partile's distane from the orresponding deterministi path (1.2). Our main results(Theorems 3.4 and 4.1, 4.2) state that the large deviations and the exit behavior of Xε are governedby this modi�ed rate funtion. The tehniques we employ to relate this time inhomogeneous ase to2



the lassial time homogeneous one stipulate the assumption that the boundaries of the domains avoidritial points of the potential.Interating partile systems suh as (1.3) have been studied from various points of view. A survey aboutthe general setting for interation (under global Lipshitz and boundedness assumptions) may be foundin [14℄. There the onvergene of the partile system to a self-stabilizing di�usion is desribed in thesense of a MKean-Vlasov limit, and asymptoti independene of the partiles, known under the namepropagation of haos as well as the link to Burgers' equation are established. Large deviations of thepartile system from the MKean-Vlasov limit were investigated by Dawson and Gärtner [4℄. Furtherresults about the onvergene of the empirial distribution of the partile system to the law of the self-stabilizing di�usion may be found in [3℄ or [10℄.MKean studies a lass of Markov proesses that ontains the solution of the limiting equation underglobal Lipshitz assumptions on the struture of the interation [11℄. A stritly loal form of interationwas investigated by Strook and Varadhan in simplifying its funtional desription to a Dira measure[13℄. Oelshläger studies the partiular ase where interation is represented by the derivative of the Dirameasure at zero [12℄. Funaki addresses existene and uniqueness for the martingale problem assoiatedwith self-stabilizing di�usions [9℄.The behavior of self-stabilizing di�usions, in partiular the onvergene to invariant measures, was studiedby various authors under di�erent assumptions on the struture of the interation, see e.g. [16℄, [15℄, [1℄and [2℄.The material in this paper is organized as follows. In setion 2 we disuss existene and uniqness of strongsolutions to equation (1.1). Strong solvability is non-trivial in our setting due to the self-stabilizing term,and is required for the subsequent investigation of large deviations. In setion 3 we derive and analyzethe rate funtion modi�ed by self-interation, and this way obtain a large deviations priniple for thedi�usion (1.1). This proves to be the key ingredient for the analysis of exit times and a derivation of aversion of Kramers' law for self-stabilizing di�usions in setion 4. We onlude with an illustration ofour main results by disussing some examples whih emphasize the in�uene of self-stabilization on exittime and exit loation (setion 5).2 Existene and uniqueness of a strong solutionThe derivation of a large deviations priniple for the self-stabilizing di�usion (1.1) in the subsequentsetion involves pathwise omparisons between di�usions in order to apply the usual tools from largedeviations theory, suh as ontration priniples and the onept of exponential equivalene. Theirappliability relies on strong existene and uniqueness for equation (1.1), whih is non-trivial in oursituation sine the solution proess' own law appears in the equation. The interesting interation term∫
Φ(Xε

t − x) duε
t (x) also adds a onsiderable amount of omplexity to the mathematial treatment. Itdepends on uε

t = IP ◦(Xε
t )−1, thus lassial existene and uniqueness results on SDE as well as thelassial results on large deviations for di�usions (Freidlin-Wentzell theory) are not diretly appliable.Consequently, the question of existene and uniqueness of solutions for equation (1.1) is an integral partin any disussion of the self-stabilizing di�usion's behavior, and will be addressed in this setion.We follow Benahour et al. [1℄ to design a reursive proedure in order to prove the existene of theinteration drift b(t, x) =
∫

Φ(x − y) duε
t (y), the seond drift omponent of (1.1). More preisely, weshall onstrut a loally Lipshitz drift term b(t, x) suh that the lassial SDE

dXε
t = V (Xε

t ) dt− b(t,Xε
t ) dt+

√
εdWt, t ≥ 0, (2.1)3



admits a unique strong solution, whih satis�es the additional ondition
b(t, x) =

∫

IRd

Φ(x − y) duε
t (y) = IE

{
Φ(x−Xε

t )
}
. (2.2)In (2.1) W is a standard d-dimensional Brownian motion, and V : IRd → IRd mimis the geometrialstruture of a potential gradient. Existene and uniqueness for equation (1.1) will be understood in thesense that (2.1) and (2.2) hold with a unique b and a pathwise unique proess X . For loally Lipshitzinteration funtions of at most polynomial growth, Benahour et al. [1℄ have proved the existene ofstrong solutions in the one-dimensional situation, and in the absene of the vetor �eld V . Sine Vfores the di�usion to spend even more time in bounded sets due to its dissipativity formulated below,it imposes no ompliations onerning questions of existene and uniqueness. Our arguments rely on amodi�ation of their onstrution.Besides some Lipshitz type regularity onditions on the oe�ients, we make assumptions onerningthe geometry of V and Φ whih render the system (3.1) dissipative in a suitable sense. All neessaryonditions are summarized in the following assumption.2.1 Assumption.i) The oe�ients V and Φ are loally Lipshitz, i.e. for R > 0 there exists KR > 0 s.t.

‖V (x) − V (y)‖ + ‖Φ(x) − Φ(y)‖ ≤ KR ‖x− y‖ (2.3)for x, y ∈ BR(0) = {z ∈ IRd : ‖z‖ < R}.ii) The interation funtion Φ is rotationally invariant, i.e. there exists an inreasing funtion φ :

[0,∞) → [0,∞) with φ(0) = 0 suh that
Φ(x) =

x

‖x‖φ(‖x‖), x ∈ IRd . (2.4)iii) Φ grows at most polynomially: there exist K > 0 and r ∈ IN suh that
‖Φ(x) − Φ(y)‖ ≤ ‖x− y‖

(
K + ‖x‖r + ‖y‖r )

, x, y ∈ IRd . (2.5)iv) V is ontinuously di�erentiable. Let DV (x) denote the Jaobian of V . We assume that there exist
KV > 0 and R0 > 0 suh that

〈h,DV (x)h〉 ≤ −KV (2.6)for h ∈ IRd s.t. ‖h‖ = 1 and x ∈ IRd s.t. ‖x‖ ≥ R0.The onditions that make our di�usion dissipative are (2.4) and (2.6). (2.4) means that the intera-tion is essentially not more ompliated than in the one-dimensional situation and has some importantimpliations for the geometry of the drift omponent IE
[
Φ(x − Xε

t )
] originating from self-interation,namely that it points bak to the origin. The same holds true for V due to (2.6). In the gradient ase

V = −∇U , −DV is the Hessian of U , and (2.6) means that its eigenvalues are uniformly bounded frombelow (w.r.t. x) on neighborhoods of ∞. (2.5) is just a onvenient way to ombine polynomial growthand the loal Lipshitz assumption in one ondition. In the following two lemmas we summarize a fewsimple onsequenes of these assumptions.2.2 Lemma. There exist onstants K, η,R1 > 0 suh that the following holds true:a) For all x, y ∈ IRd

〈
x− y, V (x) − V (y)

〉
≤ K ‖x− y‖2

. (2.7)4



b) For x, y ∈ IRd suh that ‖x− y‖ ≥ R1

〈
x− y, V (x) − V (y)

〉
≤ −η ‖x− y‖2

. (2.8)) For x ∈ IRd with ‖x‖ ≥ R1 〈
x, V (x)

〉
≤ −η ‖x‖2

. (2.9)Proof. Note �rst that, by ontinuity of DV , there exists K > 0 suh that
〈h,DV (x)h〉 ≤ Kholds for all x and all h of norm 1. Moreover, for x, y ∈ IRd, x 6= y, we have

V (x) − V (y)

‖x− y‖ =

∫ 1

0

DV (y + t(x− y))
x− y

‖x− y‖ dt,and therefore 〈 x− y

‖x− y‖ ,
V (x) − V (y)

‖x− y‖
〉

=

∫ 1

0

〈
h,DV (y + t ‖x− y‖h)h

〉
dt, (2.10)where h := x−y

‖x−y‖ . Sine the integrand is bounded by K, this proves a).For b), observe that the proportion of the line onneting x and y that lies inside BR0
(0) is at most

2R0

‖x−y‖ . Hene 〈 x− y

‖x− y‖ ,
V (x) − V (y)

‖x− y‖
〉
≤ K

2R0

‖x− y‖ −KV

(
1 − 2R0

‖x− y‖
)
,whih yields b).) is shown in a similar way. Let x ∈ IRd with ‖x‖ > R0, and set y := R0

x
‖x‖ . Then the same argumentshows the sharper bound

−KV ≥
〈 x− y

‖x− y‖ ,
V (x) − V (y)

‖x− y‖
〉

=
〈 x

‖x‖ ,
V (x) − V (y)

‖x‖ −R0

〉
,sine the line onneting x and y does not interset BR0

(0). Hene
〈x, V (x)〉 ≤ −KV ‖x‖ (‖x‖ −R0) + ‖x‖ ‖V (y)‖ ,whih shows that (2.9) is satis�ed if we set R1 = max{2R0, 4 sup‖y‖=R0

‖V (y)‖
KV

} and η = KV

4 .2.3 Lemma. For all x, y, z ∈ IRd we havea) ‖Φ(x− y)‖ ≤ 2K +
(
K + 2r+1

)(
‖x‖r+1 + ‖y‖r+1 ),b) ‖Φ(x− z) − Φ(y − z)‖ ≤ ‖x− y‖

[
K + 2r

(
‖x‖r

+ ‖y‖r
+ 2 ‖z‖r )],) ‖Φ(x− y) − Φ(x− z)‖ ≤ K1 ‖y − z‖

(
1 + ‖x‖r )(

1 + ‖y‖r
+ ‖z‖r ), where K1 = max(K, 2r+1).d) For all x, y ∈ IRd and n ∈ IN

〈
x ‖x‖n − y ‖y‖n

,Φ(x− y)
〉
≥ 0. (2.11)Proof. By (2.5) and sine Φ(0) = 0 we have

‖Φ(x − y)‖ ≤ ‖x− y‖
(
K + ‖x− y‖r )

≤ K
(
‖x‖ + ‖y‖

)
+ 2r+1

(
‖x‖r+1

+ ‖y‖r+1 )

≤ K
(
2 + ‖x‖r+1

+ ‖y‖r+1 )
+ 2r+1

(
‖x‖r+1

+ ‖y‖r+1 )

= 2K +
(
K + 2r+1

)(
‖x‖r+1

+ ‖y‖r+1 )
,5



i.e. a) is proved. For b), we use (2.5) again to see that
‖Φ(x − z) − Φ(y − z)‖ ≤ ‖x− y‖

(
K + ‖x− z‖r

+ ‖y − z‖r )

≤ ‖x− y‖
[
K + 2r

(
‖x‖r

+ ‖y‖r
+ 2 ‖z‖r )]

.Property ) follows from Φ(−x) = −Φ(x) by further exploiting b) as follows. We have
‖Φ(x − y) − Φ(x− z)‖ ≤ ‖x− y‖

[
K + 2r+1

(
‖x‖r

+ ‖y‖r
+ ‖z‖r )]

,whih obviously yields ). Finally, d) follows from a simple alulation and (2.4). Obviously, (2.11)is equivalent to 〈x ‖x‖n − y ‖y‖n
, x − y〉 ≥ 0. But this is an immediate onsequene of the Shwarzinequality.Let us now return to the onstrution of a solution to (1.1), i.e. a solution to the pair (2.1) and (2.2). Theruial property of these oupled equations is that the drift b depends on (the law of) Xε and thereforealso on V , ε and the initial ondition x0. This means that a solution of (2.1) and (2.2) onsists of a pair

(X, b), a ontinuous stohasti proess X and a drift term b, that satis�es these two equations.Our onstrution of suh a pair (X, b) shall fous on the existene of the interation drift b. It willbe onstruted as a �xed point in an appropriate funtion spae suh that the orresponding solutionof (2.1) ful�lls (2.2). Let us �rst derive some properties of b that follow from (2.2).2.4 Lemma. Let T > 0, and let (Xt)0≤t≤T be a stohasti proess suh that sup
0≤t≤T

IE
[
‖Xt‖r+1 ]

< ∞.Then b(t, x) = IE
[
Φ(x−Xt)

] has the following properties:a) b is loally Lipshitz w.r.t. x ∈ IRd, and the Lipshitz onstant is independent of t ∈ [0, T ].b) 〈
x− y, b(t, x) − b(t, y)

〉
≥ 0 for all x, y ∈ IRd, t ∈ [0, T ].) b grows polynomially of order r + 1.Proof. Note �rst that y 7→ Φ(x − y) grows polynomially of order r + 1 by Lemma 2.3 a), so that b iswell-de�ned. Moreover, we have

‖b(t, x)‖ ≤ IE
[
‖Φ(x−Xt)‖

]
≤ 2K +

(
K + 2r+1

)(
‖x‖r+1

+ IE
[
‖Xt‖r+1 ])

,whih proves ). For a) observe that, by Lemma 2.3 b), we have for z ∈ IRd, x, y ∈ BR(0)

‖Φ(x− z) − Φ(y − z)‖ ≤ ‖x− y‖
[
K + 2r+1

(
Rr + ‖z‖r )]

.Hene
‖b(t, x) − b(t, y)‖ ≤ IE

[
‖Φ(x−Xt) − Φ(y −Xt)‖

]

≤ ‖x− y‖
[
K + 2r+1

(
Rr + IE

[
‖Xt‖r ])]for x, y ∈ BR(0). Sine sup

0≤t≤T
IE

[
‖Xt‖r+1 ]

<∞, this implies a).In order to prove b), �x t ∈ [0, T ], and let µ = IP ◦X−1
t . Then

〈x− y, b(t, x) − b(t, y)〉 =

∫ 〈
x− y,

x− u

‖x− u‖φ(‖x− u‖) − y − u

‖y − u‖φ(‖y − u‖)
〉
µ(du).The integrand is non-negative. Indeed, it equals

‖x− u‖φ(‖x− u‖) + ‖y − u‖φ(‖y − u‖) −
〈
y − u,

x− u

‖x− u‖φ(‖x− u‖)
〉
−

〈
x− u,

y − u

‖y − u‖φ(‖y − u‖)
〉

≥ ‖x− u‖φ(‖x− u‖) + ‖y − u‖φ(‖y − u‖) − ‖y − u‖φ(‖x− u‖) − ‖x− u‖φ(‖y − u‖)
= (‖x− u‖ − ‖y − u‖)(φ(‖x− u‖) − φ(‖y − u‖)),whih is non-negative sine φ is inreasing, so b) is established.6



In the light of the preeding lemma it is reasonable to de�ne a spae of funtions that satisfy the abovestated onditions, and to look for a andidate for the drift funtion in this spae. Let T > 0, and for aontinuous funtion b : [0, T ]× IRd → IRd de�ne
‖b‖T := sup

t∈[0,T ]

sup
x∈IRd

‖b(t, x)‖
1 + ‖x‖2q , (2.12)where q ∈ IN is a �xed onstant suh that 2q > r, the order of the polynomial growth of the interationfuntion Φ. Furthermore, let

ΛT :=
{
b : [0, T ]× IRd → IRd

∣∣∣ ‖b‖T <∞, x 7→ b(t, x) is loally Lipshitz, uniformly w.r.t. t}. (2.13)Lemma 2.4 shows that, besides being an element of ΛT , the drift of (2.1) must satisfy the dissipativityondition 〈
x− y, b(t, x) − b(t, y)

〉
≥ 0, x, y ∈ IRd . (2.14)Therefore, we de�ne

ΛT :=
{
b ∈ ΛT : b satis�es (2.14)}. (2.15)It is obvious that ‖·‖T is indeed a norm on the vetor spae ΛT . The subset ΛT will be the objet ofinterest for our onstrution of the interation drift in what follows, i.e. we shall onstrut the interationdrift as an element of ΛT for a proper hoie of the time horizon T .One we have onstruted the drift, the di�usion X will simply be given as the unique strong solutionof (2.1) due to the following rather lassial result about strong solvability of SDEs. It ensures theexistene of a unique strong solution to (2.1) for a given drift b and is a onsequene of Theorem 10.2.2in [13℄, sine pathwise uniqueness, non-explosion and weak solvability imply strong solvability.2.5 Proposition. Let β : IR+ × IRd → IRd, (t, x) 7→ β(t, x), be loally Lipshitz, uniformly w.r.t.

t ∈ [0, T ] for eah T > 0, and assume that
sup

0≤t≤T
‖β(t, 0)‖ <∞for all T > 0. Moreover, suppose that there exists r0 > 0 suh that

〈x, β(t, x)〉 ≤ 0 for ‖x‖ ≥ r0.Then the SDE
dXt = β(t,Xt) dt+

√
εdWtadmits a unique strong solution for any random initial ondition X0.It is easily seen that the drift β(t, x) = V (x)−b(t, x) does indeed satisfy the assumptions of Proposition 2.5for any b ∈ ΛT . This is an immediate onsequene of (2.9) and (2.14).To onstrut a solution of (1.1), we proeed in two steps. In the �rst and tehnially most demandingstep, we onstrut a drift on a small time interval [0, T ]. We shall de�ne an operator Γ suh that (2.2)translates into a �xed point property for this operator. To ensure the existene of a �xed point, one needsontration properties of Γ whih shall turn out to depend on the time horizon T . This way we obtaina drift de�ned on [0, T ] suh that the assoiated solution X exists up to time T . In a seond step, weshow that this solution's moments are uniformly bounded w.r.t. time, whih guarantees non-explosionand allows us to extend X to the whole time axis.To arry out this program, we start by omparing di�usions with di�erent drift terms.7



2.6 Lemma. For b1, b2 ∈ ΛT onsider the assoiated di�usions
dYt = V (Yt) dt− b1(t, Yt) dt+

√
εdWtand

dZt = V (Zt) dt− b2(t, Zt) dt+
√
εdWt,and assume Y0 = Z0. Then for t ≤ T

‖Yt − Zt‖ ≤ eKT
∥∥b1 − b2

∥∥
T

∫ t

0

(
1 + ‖Zs‖2q )

ds.Proof. Sine Y − Z is governed by a (pathwise) ODE, we have
‖Yt − Zt‖ =

∫ t

0

〈 Ys − Zs

‖Ys − Zs‖
, V (Ys) − V (Zs)

〉
ds−

∫ t

0

〈 Ys − Zs

‖Ys − Zs‖
, b1(s, Ys) − b1(s, Zs)

〉
ds

+

∫ t

0

〈 Ys − Zs

‖Ys − Zs‖
, b2(s, Zs) − b1(s, Zs)

〉
ds.The seond integral in this deomposition is positive by de�nition of ΛT , so it an be negleted. Fur-thermore, the �rst integral is bounded by K ∫ t

0 ‖Ys − Zs‖ ds due to the dissipativity ondition (2.7) on
V . The last integral is bounded by

∫ t

0

∥∥b2(s, Zs) − b1(s, Zs)
∥∥ ds ≤

∥∥b1 − b2
∥∥

T

∫ t

0

(1 + ‖Zs‖2q
) ds.Combining these estimates yields

‖Yt − Zt‖ ≤ K

∫ t

0

‖Ys − Zs‖ ds+
∥∥b1 − b2

∥∥
T

∫ t

0

(1 + ‖Zs‖2q
) ds.Now an appliation of Gronwall's lemma ompletes the proof.The liberty of hoie for the drift terms in Lemma 2.6 allows us to get bounds on Y and its moments bymaking a partiular one for Z. We onsider the speial ase of a linear drift term b(t, x) = λx.2.7 Lemma. Let λ ≥ K, and let Z be the solution of

dZt = V (Zt) dt− λZt dt+
√
ε dWt.Furthermore, assume that IE(‖Z0‖2m) <∞ for some m ∈ IN, m ≥ 1.Then for all t ≥ 0

IE
[
‖Zt‖2m ]

≤ 2mt ‖V (0)‖R2m−1
1 exp

{ε(dm+m− 1)t

R2
1

}
, if Z0 = 0 a.s.,and

IE
[
‖Zt‖2m ]

≤ IE
[
‖Z0‖2m ]

exp

{
ε(dm+m− 1)t
(
IE

[
‖Z0‖2m ]) 1

m

}
+ 2mt ‖V (0)‖R2m−1

1 exp
{ε(dm+m− 1)t

R2
1

}
,otherwise.Proof. By It�'s formula we have for n ≥ 2

‖Zt‖n
= ‖Z0‖n

+Mn
t +n

∫ t

0

‖Zs‖n−2 〈
Zs, V (Zs)

〉
−λ ‖Zs‖n

ds+
ε

2
(dn+n−2)

∫ t

0

‖Zs‖n−2
ds, (2.16)8



where Mn is the loal martingale Mn
t = n

√
ε
∫ t

0
〈Zs ‖Zs‖n−2

, dWs〉.Sine 〈x, V (x)〉 ≤ −η ‖x‖2 for ‖x‖ > R1 aording to (2.9), the �rst integrand of (2.16) is negative if
‖Zs‖ > R1. If ‖Zs‖ ≤ R1, we use the global estimate 〈x, V (x)〉 ≤ K ‖x‖2

+ ‖V (0)‖ ‖x‖, whih followsfrom (2.7). We dedue that, sine λ ≥ K,
‖Zs‖n−2 〈

Zs, V (Zs)
〉
− λ ‖Zs‖n ≤ (K − λ) ‖Zs‖n

+ ‖V (0)‖ ‖Zs‖n−1 ≤ ‖V (0)‖Rn−1
1 .Thus,

‖Zt‖n ≤ ‖Z0‖n
+Mn

t + n ‖V (0)‖ tRn−1
1 +

ε

2
(dn+ n− 2)

∫ t

0

‖Zs‖n−2
ds. (2.17)Using a loalization argument and monotone onvergene yields

IE
[
‖Zt‖n ]

≤ IE
[
‖Z0‖n ]

+ n ‖V (0)‖ tRn−1
1 +

ε

2
(dn+ n− 2)

∫ t

0

IE
[
‖Zs‖n−2 ]

ds. (2.18)We laim that this implies
IE

[
‖Zt‖2m ]

≤
m∑

j=0

IE
[
‖Z0‖2(m−j) ] (αmt)

j

j!
+ 2m

‖V (0)‖
αm

R2m+1
1

m∑

j=1

(αmt)
j

R2j
1 j!

(2.19)for all m ∈ IN, m ≥ 1, where αm = ε(dm +m− 1). Indeed, for m = 1 this is evidently true by (2.18).The general ase follows by indution. Assume (2.19) holds true for m− 1. Then by (2.18)
IE

[
‖Zt‖2m ]

≤ IE
[
‖Z0‖2m ]

+ 2m ‖V (0)‖ tR2m−1
1

+ αm

∫ t

0

m∑

j=1

IE
[
‖Z0‖2(m−j) ] (αm−1s)

j−1

(j − 1)!
+ 2(m− 1)

‖V (0)‖
αm−1

R2m−1
1

m∑

j=2

(αm−1s)
j−1

R
2(j−1)
1 (j − 1)!

ds

≤ IE
[
‖Z0‖2m ]

+ 2m ‖V (0)‖ tR2m−1
1

+

m∑

j=1

αm IE
[
‖Z0‖2(m−j) ]α j−1

m−1 t
j

j!
+ 2m ‖V (0)‖R2m−1

1

m∑

j=2

αm

α j−2
m−1 t

j

R
2(j−1)
1 j!

≤ 2m ‖V (0)‖ tR2m−1
1 +

m∑

j=0

IE
[
‖Z0‖2(m−j) ]αj

m tj

j!
+ 2m ‖V (0)‖R2m+1

1

m∑

j=2

α j−1
m tj

R2j
1 j!

=

m∑

j=0

IE
[
‖Z0‖2(m−j) ]αj

m tj

j!
+ 2m ‖V (0)‖R2m+1

1

m∑

j=1

α j−1
m tj

R2j
1 j!

,and so (2.19) is established. Sine IE
[
‖Z0‖2(m−j) ]

≤
(
IE

[
‖Z0‖2m ])1− j

m for j ≤ m, we may ex-ploit (2.19) further to onlude that
IE

[
‖Zt‖2m ]

≤ IE
[
‖Z0‖2m ] m∑

j=0

αj
m tj

j!
(
IE

[
‖Z0‖2m ]) j

m

+ 2mt ‖V (0)‖R2m−1
1

m∑

j=1

α j−1
m tj−1

R2j−2
1 j!

≤ IE
[
‖Z0‖2m ]

exp

{
αmt

(
IE

[
‖Z0‖2m ]) 1

m

}
+ 2mt ‖V (0)‖R2m−1

1 exp
{αmt

R2
1

}
,whih is the announed bound if we identify the �rst term as zero in ase Z0 = 0.Let us de�ne the mapping Γ on ΛT that will be a ontration under suitable onditions. For b ∈ ΛT ,denote by X(b) the solution of

dXt = V (Xt) dt− b(t,Xt) dt+
√
εdWt, (2.20)and let Γb(t, x) := IE

[
Φ

(
x −X

(b)
t

)]. By ombining the two previous lemmas, we obtain the following apriori bound on the moments of X(b). 9



2.8 Lemma. Assume that the initial datum of (2.20) satis�es IE
[∥∥X(b)

0

∥∥2qn]
<∞ for some n ∈ IN.For eah T > 0 there exists k = k(n, T ) > 0 suh that for all b ∈ ΛT

sup
0≤t≤T

IE
[∥∥X(b)

t

∥∥n]
≤ k

(
1 + TenKT

(
‖b‖n

T +Kn
))
.Proof. Let b1(t, x) := b(t, x) and b2(t, x) = Kx, and denote by Y , Z the di�usions assoiated with b1,

b2. By Lemma 2.6 we have for t ∈ [0, T ]

IE
[
‖Yt‖n ]

≤ 2n(IE
[
‖Zt‖n ]

+ IE
[
‖Yt − Zt‖n ]

)

≤ 2n IE
[
‖Zt‖n ]

+ 2nenKT
∥∥b1 − b2

∥∥n

T
IE

[ ∫ t

0

(1 + ‖Zs‖2q
)nds

]

≤ 2n
(
1 + IE

[
‖Zt‖2qn ])

+ 2nenKT t
( ∥∥b1

∥∥
T

+
∥∥b2

∥∥
T

)n
sup

0≤s≤T
IE

[
(1 + ‖Zs‖2q

)n
]

≤ 8n
(
1 + sup

0≤s≤T
IE

[
‖Zs‖2qn ])(

1 + tenKT
( ∥∥b1

∥∥n

T
+

∥∥b2
∥∥n

T

))
.Due to the assumption IE

[∥∥X(b)
0

∥∥2qn]
< ∞, the onstant k(n, T ) = 8n

(
1 + sup0≤s≤T IE

[
‖Zs‖2qn ]) is�nite by Lemma 2.7. Furthermore, we have ∥∥b2

∥∥
T
≤ K, i.e. the lemma is proved.Now we are in a position to establish the loal Lipshitz ontinuity of the operator Γ. The expliitexpression for the Lipshitz onstant shows that Γ will be a ontration on a su�iently small timeinterval.2.9 Lemma. Let b1, b2 ∈ ΛT , and denote by Y ,Z the orresponding di�usions as in Lemma 2.6. For

i ∈ IN let mi(T ) = sup0≤t≤T IE
[
‖Yt‖i ] and ni(T ) = sup0≤t≤T IE

[
‖Zt‖i ].There exists a onstant k = k(m4q(T ), n4q(T )) suh that

‖Γb1 − Γb2‖T ≤ k
√
TeKT ‖b1 − b2‖T .Proof. From Lemma 2.3 ) and the Cauhy-Shwarz inequality follows that

∥∥Γb1(t, x) − Γb2(t, x)
∥∥ ≤ IE

[
‖Φ(x− Yt) − Φ(x− Zt)‖

]

≤ K1

(
1 + ‖x‖r )

IE
[
‖Yt − Zt‖

(
1 + ‖Yt‖r + ‖Zt‖r )]

≤ K1

(
1 + ‖x‖r )√

IE
[
‖Yt − Zt‖2 ]

IE
[(

1 + ‖Yt‖r
+ ‖Zt‖r )2]

,where K1 = max(K, 2r+1). By Lemma 2.6, sine (1 + x)2 ≤ 2(1 + x2), we have
IE

[
‖Yt − Zt‖2 ]

≤ e2KT
∥∥b1 − b2

∥∥2

T
IE

[( ∫ T

0

(
1 + ‖Zs‖2q )

ds
)2 ]

≤ e2KT
∥∥b1 − b2

∥∥2

T

∫ T

0

IE
[
(1 + ‖Zs‖2q

)2
]
ds

≤ 2T e2KT
∥∥b1 − b2

∥∥2

T

(
1 + sup

0≤s≤T
IE

[
‖Zs‖4q ])

.Moreover, using the inequality (a+ b)2 ≤ 2(a2 + b2), we dedue that
IE

[(
1 + ‖Yt‖r

+ ‖Zt‖r )2] ≤ 2
(
1 + 2 IE

[
‖Yt‖2r

+ ‖Zt‖2r ]
) ≤ 10

(
1 + IE

[
‖Yt‖4q

+ ‖Zt‖4q ]
),where we exploited that 2q > r implies IE

[
‖Yt‖2r

] ≤ 1 + IE
[
‖Yt‖4q

], and likewise for the moment of Zt.By ombining all these estimates, we �nd that
∥∥Γb1(t, x) − Γb2(t, x)

∥∥

1 + ‖x‖2q ≤ 2K1

√
5T eKT

∥∥b1 − b2
∥∥

T

1 + ‖x‖r

1 + ‖x‖2q

×
(
1 + sup

0≤s≤T
IE

[
‖Zs‖4q ])1/2(

1 + IE
[
‖Yt‖4q

+ ‖Zt‖4q ])1/2

.10



Hene, if we set k := 4K1

√
5
{(

1 + n4q(T )
)(

1 +m4q(T ) + n4q(T )
)}1/2, we may onlude that

∥∥Γb1 − Γb2
∥∥

T
≤ k

√
T eKT

∥∥b1 − b2
∥∥

T
,i.e. k is the desired onstant.The next proposition shows that the restrition of Γ to a suitable subset of the funtion spae ΛT is aontrative mapping, whih allows us to onstrut a solution on a small time interval.2.10 Proposition. For ν > 0 let Λν

T = {b ∈ ΛT : ‖b‖T ≤ ν}. Assume that the initial ondition X0satis�es IE
[
‖X0‖2qn ]

< ∞ for some n ≥ 4q. There exists ν0 > 0 suh that for any ν ≥ ν0 there exists
T = T (ν) > 0 suh that the following holds true:a) Γ(Λν

T ) ⊂ Λν
T , and the Lipshitz onstant of Γ|Λν

T is less than 1
2 .b) There exists a strong solution to (2.1), (2.2) on [0, T ] whih satis�es

sup
0≤t≤T

IE
[∥∥X(b)

t

∥∥n]
≤ k

(
1 + TenKT

(
νn +Kn

))
,where k = k(n, T ) is the onstant introdued in Lemma 2.8.Proof. Let b ∈ ΛT , and let X = X(b) and mi(T ) = sup0≤t≤T IE

[
‖Xt‖i ] for i ∈ IN. By Lemma 2.8 theondition IE

[
‖X0‖2qn ]

<∞ implies mi(T ) <∞ for T > 0 and i ≤ n. Moreover, Lemma 2.3 shows that
‖Γb(t, x)‖ ≤ 2K + (K + 2r+1)

(
‖x‖r+1

+ IE
[
‖X‖r+1 ])

≤ K̃(1 + ‖x‖r+1
)
(
1 + IE

[
‖Xt‖r+1 ])

,where K̃ = 2K + 2r+1. Consequently, by de�nition of ‖·‖T ,
‖Γb‖T ≤ 2K̃(1 +mr+1(T )), t ≤ T. (2.21)By Lemma 2.8 there exists k = k(r + 1, T ) > 0 suh that

mr+1(T ) ≤ k
(
1 + Te(r+1)KT

(
‖b‖r+1

T +Kr+1
))
. (2.22)This inequality, together with (2.21), is the key for �nding a suitable subset of ΛT on whih Γ is on-trative. The r.h.s. of (2.22) onverges to k as T → 0, and this onvergene is uniform w.r.t. b ∈ Λν

Tfor eah ν > 0. The dependene of the limiting onstant k on T imposes no problem here; just �x
k = k(r + 1, T0) > 0 for some T0 and use the fat that (2.22) is valid for all T ≤ T0, as the proof ofLemma 2.8 shows.Thus, we may �x ν0 > 2K̃(1 + k) and dedue that for any ν > ν0 we an �nd T0 = T0(ν) suh that
‖b‖T ≤ ν implies ‖Γb‖T ≤ ν for T ≤ T0. Moreover, by Lemma 2.4, Γb satis�es all the onditions asrequired for it to belong to ΛT , i.e. Γ maps Λν

T into itself for all T ≤ T0. Additionally, the assumption
n ≥ 4q implies that m4q(T ) is uniformly bounded for all b in Λν

T , and Lemma 2.9 shows that, by even-tually dereasing T0, we an ahieve that Γ is a ontration on Λν
T with Lipshitz onstant less than 1

2 ,i.e. a) is established.In order to prove b), the existene of a strong solution on the time interval [0, T ] for some T ≤ T0, weiterate the drift through Γ. Let b0 ∈ Λν
T , and de�ne
bn+1 := Γbn for n ∈ IN0 .The ontration property of Γ yields ‖bn+1 − bn‖T ≤ 2−n ‖b1 − b0‖T for all n, and therefore

∞∑

n=0

‖bn+1 − bn‖T <∞,11



whih entails that (bn) is a Cauhy sequene w.r.t. ‖·‖T . By de�nition of ‖·‖T , (bn) onverges pointwiseto a ontinuous funtion b = b(t, x) with ‖b‖T <∞. It remains to verify that the limit is again an elementof ΛT . In order to see that it is loally Lipshitz, let X(n) := X(bn). As in the proof of Lemma 2.4, wehave for x, y ∈ BR(0)

‖Γbn(t, x) − Γbn(t, y)‖ ≤ IE
[∥∥Φ(x−X

(n)
t ) − Φ(y −X

(n)
t )

∥∥]

≤ ‖x− y‖
[
K + 2r+1

(
Rr + IE

[∥∥X(n)
t

∥∥r])]
.Sine ‖bn‖T ≤ ν for all n, (2.22) yields

sup
n∈IN

sup
0≤t≤T

IE
[∥∥X(n)

t

∥∥r] ≤ k
(
1 + Te(r+1)KT

(
νr+1 +Kr+1

))
.Therefore, we may send n→ ∞ to onlude that b is loally Lipshitz. b being the pointwise limit of the

bn, it inherits the polynomial growth property and the dissipativity ondition as stated in Lemma 2.4 b)and ). (Notie that we may not invoke Lemma 2.4 at this stage.)It remains to show that the di�usion X = X(b) assoiated to b has the desired properties. Note �rst thatthe existene of X is guaranteed by the lassial result of Proposition 2.5. Sine Γb = b, whih meansthat
b(t, x) = Γb(t, x) = IE

[
Φ(x−X

(b)
t )

]for t ∈ [0, T ] and x ∈ IRd, X is the di�usion with interation drift b. The boundedness of its moments isagain a onsequene of Lemma 2.8.Let us reall the essentials of the onstrution arried out so far. We have shown the existene of asolution to (1.1) on a small time interval [0, T ]. For the moments of order n to be �nite, one needsintegrability of order 2qn for the initial ondition. Moreover, the parameter n needs to be larger or equalto 4q in order for the �xed point argument of Proposition 2.10 to work. Observe that the ondition
n ≥ 4q appears �rst in this Proposition, sine this is the �rst time the proess is oupled to its own drift,while in all previous statements the �niteness of moments is guaranteed by the omparison against thedi�usion Z, whih is governed by a linear drift term.In order to �nd a solution that exists for all times, we need to arefully extend the onstruted pair (X, b)beyond the time horizon T . Although non-explosion and �niteness of moments would be guaranteed forall T by Proposition 2.5 and Lemma 2.8, we have to take are of the fat that the drift itself is de�ned onlyon the time interval [0, T ]. With su�iently strong integrability assumptions for X0 one ould performthe same onstrution on the time intervals [T, 2T ], [2T, 3T ] and so on, but one loses an integrabilityorder 2q in eah time step of length T .For that reason we need better ontrol of the moments of X over the whole time axis, whih is ahievedby the following a posteriori estimate.2.11 Proposition. Let m ∈ IN, m ≥ 4q2, suh that IE

[
‖X0‖2m ]

< ∞. For eah n ∈ {1, . . . ,m} thereexists a onstant α = α(n) > 0 suh that the following holds true for all T > 0: if X solves (1.1) on
[0, T ], then

sup
0≤t≤T

IE
[
‖Xt‖2n ]

≤ α(n).Proof. Let fn(t) = IE[‖Xt‖2n], and let b(t, x) = IE
[
Φ(x−Xt)

]. We proeed in several steps.Step 1: Boundedness in L2. By Lemma 2.8 we know that sup0≤t≤T f1(t) < ∞. The only point is toshow that the bound may be hosen independent of T . By It�'s formula we have
f1(t) = IE

[
‖X0‖2 ]

+ εtd+ 2

∫ t

0

IE
[
〈Xs, V (Xs)〉

]
ds− 2

∫ t

0

IE
[
〈Xs, b(s,Xs)〉

]
ds.12



Let us �rst estimate the last term that ontains the interation drift b. By its de�nition, we may takean independent opy X̃ of X , to write
2 IE

[
〈Xs, b(s,Xs)〉

]
= 2 IE

[
〈Xs,Φ(Xs − X̃s)〉

]
= IE

[
〈Xs,Φ(Xs − X̃s)〉

]
− IE

[
〈X̃s,Φ(Xs − X̃s)〉

]

= IE
[
〈Xs − X̃s,Φ(Xs − X̃s)〉

]
≥ 0where the last inequality is due to (2.4). In order to estimate the other integral, let R ≥ R1. Using (2.9)and the loal lipshitz property of V , we see that

IE
[
〈Xs, V (Xs)〉

]
≤ −η IE

[
‖Xs‖2

1{‖Xs‖>R}

]
+ IE

[
(K ‖Xs‖2

+ ‖V (0)‖ ‖Xs‖)1{‖Xs‖≤R}

]

≤ −η IE
[
‖Xs‖2 ]

+ (η +K)R2 + ‖V (0)‖R = −ηf1(s) +R(‖V (0)‖ + R(η +K)).Obviously, f1 is di�erentiable, and summing up these bounds yields
f ′
1(t) ≤ εd− 2ηf1(t) + 2R(‖V (0)‖ +R(η +K)).Thus, there exists γ > 0 suh that {t ∈ [0, T ] : f1(t) ≥ γ} ⊂ {t ∈ [0, T ] : f ′

1(t) ≤ 0}, whih implies
f1(t) ≤ f1(0) ∨ γ for all t ∈ [0, T ]. This is the laimed bound, sine γ is independent of T .Step 2: Moment bound for the onvolution. Let X̃ be an independent opy of X , i.e. a solution of (1.1)driven by a Brownian motion that is independent of W . In this step we shall prove that IE[‖Xt − X̃t‖2n]is uniformly bounded w.r.t. time.Let R ≥ R1, and let τ = inf{t ≥ 0 : ‖Xt − X̃t‖ ≥ R}, gn(t) = IE[‖Xt − X̃t‖2n

1{t<τ}] and wn(t) =

IE[‖Xt∧τ − X̃τ∧t‖2n]. Then wn(t) = gn(t) + R2n IP(t ≥ τ). Furthermore, using the SDE (1.1) for both
X and X̃ , applying It�'s formula to the di�erene and taking expetations, we obtain for n ≥ 1

wn(t) = IE[‖X0 − X̃0‖2n] + ε(dn+ n− 1) IE
[ ∫ t∧τ

0

‖Xs − X̃s‖2n−2 ds
]

+ 2n IE
[ ∫ t∧τ

0

‖Xs − X̃s‖2n−2〈Xs − X̃s, V (Xs) − V (X̃s)〉 ds
]

− 2n IE
[ ∫ t∧τ

0

‖Xs − X̃s‖2n−2〈Xs − X̃s, b(s,Xs) − b(s, X̃s)〉 ds
]
.The last term is negative by Lemma 2.4, whih yields together with (2.7), (2.8) and Hölder's inequality

w′
n(t) ≤ε(dn+ n− 1) IE

[
‖Xt − X̃t‖2n−2

1{t<τ}

]

+ 2n IE
[
‖Xt − X̃t‖2n−2〈Xt − X̃t, V (Xt) − V (X̃t)〉1{t<τ}

]

≤ ε(dn+ n− 1) gn−1(t) + 2n(K + η) IE
[
‖Xt − X̃t‖2n

1{‖Xt−X̃t‖≤R1 ; τ>t}
]

− 2nη IE
[
‖Xt − X̃t‖2n

1{t<τ}

]

≤ ε(dn+ n− 1) gn(t)1−
1

n + 2n(K + η)R2n
1 − 2nηgn(t).As in the �rst step, there exists some onstant δ > 0 suh that {t ∈ [0, T ] : gn(t) > δ} ⊂ {t ∈ [0, T ] :

w′
n(t) < 0}. Sine wn − gn is non-dereasing this implies gn(t) ≤ gn(0) ∨ δ for all t ∈ [0, T ]. Moreover,

δ depends only on the onstants appearing in the last inequality and is independent of the loalizationparameter. Hene, by monotone onvergene, we have
IE[‖Xt − X̃t‖2n] ≤ IE[‖X0 − X̃0‖2n] ∨ δ, t ∈ [0, T ].Step 3: Bound for the entered moments of X . In this step we shall prove that the moments of Yt :=

Xt − IE[Xt] are uniformly bounded. We proeed by indution. The seond moments of X are uniformlybounded by the �rst step, so are those of Y . Assume the moments of order 2n are uniformly bounded13



by γn > 0. If n + 1 ≤ m, we may invoke step 2, to �nd δn+1 > 0 suh that IE[‖Xt − X̃t‖2n+2] ≤ δn+1for t ∈ [0, T ]. Now we make the following observation. If ξ, ξ̃ are independent, real-valued opies of eahother with IE[ξ] = 0, then
IE

[
(ξ − ξ̃)2n+2

]
= 2 IE

[
ξ2n+2

]
+

2n∑

k=2

(
2n+ 2

k

)
(−1)k IE

[
ξk

]
IE

[
ξ2n+2−k

]
,and therefore

2 IE
[
ξ2n+2

]
≤ IE

[
(ξ − ξ̃)2n+2

]
+

2n∑

k=2

(
2n+ 2

k

) ∣∣IE
[
ξk

]
IE

[
ξ2n+2−k

]∣∣

≤ IE
[
(ξ − ξ̃)2n+2

]
+ 22n+2

(
1 + IE

[
ξ2n

])2
.Let us apply this to the omponents of Y , and denote them by Y 1, . . . , Y d. We obtain for t ∈ [0, T ]

2 IE
[
‖Yt‖2n+2 ]

≤ 2dn+1 IE
[ d∑

j=1

(Y j
t )2n+2

]

≤ dn+1
d∑

j=1

IE
[
(Xj

t − X̃j
t )2n+2

]
+ 22n+2

(
1 + IE

[
(Y j

t )2n
])2

≤ dn+2
(

IE
[
‖Xt − X̃t‖2n+2

]
+ 22n+2

(
1 + IE

[
‖Yt‖2n ])2

)

≤ dn+2
(
δn+1 + 22n+2

(
1 + γn

)2
)
,whih is a uniform bound for the order 2(n+ 1).Step 4: Bound for the moments of X . In the fourth and �nal step, we prove the announed uniformbound for the moments of X . It follows immediately from the inequality

IE
[
‖Xt‖2n ]

≤ 22n
(
IE

[
‖Xt − IE[Xt]‖2n ]

+ ‖IE[Xt]‖2n )
.The last term satis�es ‖IE[Xt]‖2n ≤ f1(t)

n, whih is uniformly bounded aording to step 1, and theentered moments of order 2n are uniformly bounded by step 3 whenever n ≤ m.The results onerning the existene of Xε are summarized in the following theorem.2.12 Theorem. Let q :=
[

r
2 +1

], and let X0 be a random initial ondition suh that IE
[
‖X0‖8q2 ]

<∞.Then there exists a drift term b(t, x) = bε,X0(t, x) suh that (2.1) admits a unique strong solution Xεthat satis�es (2.2), and Xε is the unique strong solution of (1.1). Moreover, we have for all n ∈ IN

sup
t≥0

IE
[
‖Xε

t ‖2n ]
<∞ (2.23)whenever IE

[
‖Xε

0‖2n ]
<∞. In partiular, if X0 is deterministi, then Xε is bounded in Lp(IP⊗λ[0,T ])for all p ≥ 1. λ is used as a symbol for Lebesgue measure throughout.Proof. In a �rst step, we prove uniqueness on a small time interval. Let K̃ = 2K + 2r+1, and hoose

α(q) > 0 aording to Proposition 2.11. By Proposition 2.10 there exist ν ≥ 2K̃(2+α(q)), T = T (ν) > 0and b ∈ Λν
T suh that Γb = b, i.e. X = X(b) is a strong solution of (1.1) on [0, T ]. Assume Y isanother solution of (1.1) on [0, T ] starting at X0 suh that m2q(T ) := sup0≤t≤T IE[‖Yt‖2q

] <∞, and let
c(t, x) = IE

[
Φ(x − Yt)

]. Then c ∈ ΛT by Lemma 2.4, and Γc = c. Moreover, it follows from (2.21) andProposition 2.11 that
‖c‖T ≤ 2K̃(2 +m2q(T )) ≤ 2K̃(2 + α(q)) ≤ ν,14



i.e. c ∈ Λν
T . Hene c is the unique �xed point of Γ|Λν

T . Thus c = b, and Proposition 2.5 yields X = Y.In the seond step, we show the existene of a unique solution on [0,∞). Let
U := sup

{
T > 0 : (1.1) admits a unique strong solution X on [0, T ], sup

0≤t≤T
IE

[
‖Xt‖2q ]

<∞
}
.By the �rst step we know that U > 0. Assume U <∞. As in the �rst step, hoose α(4q2) > 0 aordingto Proposition 2.11, and then �x ν̃ ≥ 2K̃(2 + α(4q2)) and T̃ = T̃ (ν̃) > 0 that satisfy Proposition 2.10.Let 0 < δ < min(U, T̃/2), and �x T ∈]U − δ, U [. There exists a unique strong solution X on [0, T ], and

IE[‖XT ‖8q2

] < ∞ by Proposition 2.11. Now onsider equation (1.1) on [T,∞) with initial datum XT .As in the �rst step, we may �nd a unique strong solution on [T, T + T̃ ]. But this is a ontradition sine
T + T̃ > U . Consequently, U = ∞, and (2.23) holds by Proposition 2.11.3 Large deviationsLet us now turn to the large deviations behavior of the di�usion Xε given by the SDE (1.1), i.e.

dXε
t = V (Xε

t ) dt−
∫

IRd

Φ(Xε
t − x) duε

t (x) dt +
√
εdWt, t ≥ 0, X0 = x0 ∈ IRd . (3.1)The heuristis underlying large deviations theory is to identify a deterministi path around whih thedi�usion is onentrated with overwhelming probability, so that the stohasti motion an be seen as asmall random perturbation of this deterministi path. This means in partiular that the law uε

t of Xε
tis lose to some Dira mass if ε is small. We therefore proeed in two steps towards the aim of provinga large deviations priniple for Xε. In a �rst step we �guess� the deterministi limit around whih Xεis onentrated for small ε, and replae uε

t by its suspeted limit, i.e. we approximate the law of Xε.This way we irumvent the di�ulty of the dependene on the law of Xε � the self-interation term �and obtain a di�usion whih is de�ned by means of a lassial SDE. We then prove in the seond stepthat this di�usion is exponentially equivalent to Xε, i.e. it has the same large deviations behavior. Thisinvolves pathwise omparisons.3.1 Small noise asymptotis of the interation driftThe limiting behavior of the di�usion Xε an be guessed in the following way. As explained, the laws
uε

t should tend to a Dira measure in the small noise limit, and sine Φ(0) = 0 the interation termwill vanish in the limiting equation. Therefore, the di�usion Xε is a small random perturbation of thedeterministi motion ψ, given as the solution of the deterministi equation
ψ̇t = V (ψt), ψ0 = x0, (3.2)and the large deviations priniple will desribe the asymptoti deviation of Xε from this path. Muhlike in the ase of gradient type systems, the dissipativity ondition (2.9) guarantees non-explosion of ψ.Indeed, sine d

dt ‖ψt‖2
= 2〈ψt, ψ̇t〉 = 2〈ψt, V (ψt)〉, the derivative of ‖ψt‖2 is negative for large values of

‖ψt‖ by (2.9), so ψ is bounded. In the sequel we shall write ψt(x0) if we want to stress the dependeneon the initial ondition.We have to ontrol the di�usion's deviation from this deterministi limit on a �nite time interval. Ana priori estimate is provided by the following lemma, whih gives an L2-bound for this deviation. Fornotational onveniene, we suppress the ε-dependene of the di�usion in the sequel, but keep in mindthat all proesses depend on ε. 15



3.1 Lemma. Let Zt := Xt − ψt(x0). Then
IE ‖Zt‖2 ≤ εtd e2Kt,where K is the onstant introdued in Lemma 2.2. In partiular, Z → 0 as ε → 0 in Lp(IP⊗λ[0,T ]) forall p ≥ 1 and T > 0. This onvergene is loally uniform w.r.t. the initial ondition x0.Proof. By It�'s formula we have

‖Zt‖2
= 2

√
ε

∫ t

0

〈Zs, dWs〉 − 2

∫ t

0

〈
Zs, b

ε,x0(s, Zs + ψs(x0))
〉
ds

+ 2

∫ t

0

〈
Zs, V (Zs + ψs(x0)) − V (ψs(x0))

〉
ds+ εtd.Sine X and thus Z is square-integrable by Theorem 2.12, the stohasti integral in this equation is amartingale. Now onsider the seond term ontaining the interation drift bε,x0 . Let νs = IP ◦Z−1

s denotethe law of Zs, and reall Assumption 2.1 ii) about the interation funtion Φ. The latter implies
2 IE

〈
Zs, b

ε,x0(s, Zs + ψs(x0))
〉

= 2

∫ 〈
z, IE

[
Φ(z + ψs(x0) −Xs)

]〉
νs(dz)

= 2

∫ ∫ 〈
z,Φ(z − y)

〉
νs(dy) νs(dz)

=

∫ ∫ 〈
z − y,Φ(z − y)

〉
νs(dy) νs(dz) ≥ 0.Hene by the growth ondition (2.7) for V

IE ‖Zt‖2 ≤ 2

∫ t

0

IE
〈
Zs, V (Zs + ψs(x0)) − V (ψs(x0))

〉
ds+ εtd

≤ 2K

∫ t

0

IE ‖Zs‖2
ds+ εtd,and Gronwall's lemma yields

IE ‖Zt‖2 ≤ εtd e2Kt.This is the laimed bound. For the Lp-onvergene observe that this bound is independent of the initialondition x0. Moreover, the argument of Proposition 2.11 shows that sup
{

IE
(
‖Xt‖p )

: 0 ≤ t ≤
T, x0 ∈ L, 0 < ε < ε0

}
< ∞ holds for ompat sets L and ε0 > 0. This implies that Z is boundedin Lp(IP⊗λ[0,T ]) as ε → 0, uniformly w.r.t. x0 ∈ L. Now the Lp-onvergene follows from the Vitalionvergene theorem.3.2 Corollary. For any T > 0 we have

lim
ε→0

bε,x0(t, x) = Φ(x− ψt(x0)),uniformly w.r.t. t ∈ [0, T ] and w.r.t. x and x0 on ompat subsets of IRd.Proof. The growth ondition on Φ and the Cauhy-Shwarz inequality yield
∥∥bε(t, x) − Φ(x− ψt(x0))

∥∥2 ≤ IE
[
‖Xt − ψt(x0)‖

(
K + ‖x−Xt‖r

+ ‖x− ψt(x0)‖r
)]2

≤ IE
[
‖Xt − ψt(x0)‖2

]
IE

[(
K + ‖x−Xt‖r

+ ‖x− ψt(x0)‖r
)2]

.The �rst expetation on the r.h.s. of this inequality tends to zero by Lemma 3.1. Sine X is bounded in
L2r(IP), uniformly w.r.t. x0 on ompat sets, the laimed onvergene follows.16



In a next step we replae the di�usion's law in (3.1) by its limit, the Dira measure in ψt(x0). Beforedoing so, let us introdue a slight generalization of X .Theorem 2.12 implies that X is a time inhomogeneous Markov proess. The di�usion X , starting attime s ≥ 0, is given as the unique solution of the stohasti integral equation
Xt = Xs +

∫ t

s

[V (Xu) − bε,x0(u,Xu)] du+
√
ε(Wt −Ws), t ≥ s.By shifting the starting time bak to the origin, this equation translates into

Xt+s = Xs +

∫ t

0

[V (Xu+s) − bε,x0(u+ s,Xu+s)] du +
√
εW s

t , t ≥ 0,where W s is the Brownian motion given by W s
t = Wt+s −Ws, whih is independent of Xs. Sine we aremainly interested in the law of X , we may replae W s by W .For an initial ondition ξ0 ∈ IRd and s ≥ 0, we denote by ξs,ξ0 the unique solution of the equation

ξt = ξ0 +

∫ t

0

V (ξu) − bε,x0(u+ s, ξu) du+
√
εWt, t ≥ 0. (3.3)Note that ξ0,x0 = X , and that ξs,ξ0 has the same law as Xt+s, given that Xs = ξ0. The interpretationof bε,x0 as an interation drift is lost in this equation, sine bε,x0 does not depend on ξs,ξ0 .Now reall that bε,x0(t, x) = IE

{
Φ(x − Xε

t )
}, whih tends to Φ(x − ψt(x0)) by Corollary 3.2. Thismotivates the de�nition of the following analogue of ξs,ξ0 , in whih uε

t is replaed by the Dira measurein ψt(x0). We denote by Y s,y the solution of the equation
Yt = y +

∫ t

0

V (Yu) − Φ(Yu − ψt+s(x0)) du+
√
εWt, t ≥ 0. (3.4)This equation is an SDE in the lassial sense, and it admits a unique strong solution by Proposition 2.5.Furthermore, it is known that Y s,y satis�es a large deviations priniple in the spae C0T = {f : [0, T ] →

IRd | f is ontinuous}, equipped with the topology of uniform onvergene. This LDP desribes thedeviations of Y s,y from the deterministi system ϕ̇t = V (ϕt) − Φ(ϕt − ψt+s(x0)) with ϕ0 = y. Observethat ϕ oinides with ψ(x0) in ase y = x0, and that non-explosion of ϕ is ensured by the dissipativityproperties of V and Φ as follows. By (2.4) we have
d

dt
‖ϕt − ψt+s‖2

= 2
〈
ϕt − ψt+s, ϕ̇t − ψ̇t+s

〉
= 2

〈
ϕt − ψt+s, V (ϕt) − Φ(ϕt − ψt+s) − V (ψt+s)

〉

≤ 2
〈
ϕt − ψt+s, V (ϕt) − V (ψt+s)

〉
. (3.5)Sine the last expression is negative for large values of ‖ϕt − ψt+s‖ by (2.8), this means that ϕt − ψt+sis bounded. But ψ is bounded, so ϕ is also bounded.Let ρ0T (f, g) := sup0≤t≤T ‖f − g‖ (f, g ∈ C0T ) be the metri orresponding to uniform topology, anddenote by H1

y the Cameron-Martin spae of absolutely ontinuous funtions starting in y that possesssquare integrable derivatives.3.3 Proposition. The family (Y s,y) satis�es a large deviations priniple with good rate funtion
Is,y
0T (ϕ) =

{
1
2

∫ T

0
‖ϕ̇t − V (ϕt) + Φ(ϕt − ψt+s(x0))‖2

dt, if ϕ ∈ H1
y ,

∞, otherwise . (3.6)More preisely, for any losed set F ⊂ C0T we have
lim sup

ε→0
ε log IP(Y s,y ∈ F ) ≤ − inf

φ∈F
Is,y
0T (φ),and for any open set G ⊂ C0T

lim inf
ε→0

ε log IP(Y s,y ∈ G) ≥ − inf
φ∈G

Is,y
0T (φ).17



Proof. Let a(t, y) := V (y)− Φ(y− ψt), and denote by F the funtion that maps a path g ∈ C0T to thesolution f of the ODE
ft = x0 +

∫ t

0

a(s, fs) ds+ gt, 0 ≤ t ≤ T.Fix g ∈ C0T , and let R > 0 suh that the deterministi trajetory ψ(x0) as well as f = F (g) stay in
BR(0) up to time T . Note that non-explosion of f is guaranteed by dissipativity of a, muh like in (3.5).Now observe that a is loally Lipshitz with onstant 2K2R on BR(0), uniformly w.r.t. t ∈ [0, T ]. Thus,we have for g̃ ∈ C0T , f̃ = F (g̃) suh thatf̃ does not leave BR(0) up to time T

‖ft − f̃t‖ ≤ 2K2R

∫ t

0

‖fs − f̃s‖ ds+ ‖gt − g̃t‖ ,and Gronwalls's lemma yields
ρ0T (f, f̃) ≤ ρ0T (g, g̃) e2K2RT ,i.e. F is ontinuous. Indeed, the last inequality shows that we do not have to presume that f̃ stays in

BR(0), but that this is granted whenever ρ0T (g, g̃) is su�iently small.Sine F is ontinuous and F (
√
εW ) = Y , we may invoke Shilder's theorem and the ontration priniple,to dedue that Y satis�es a large deviations priniple with rate funtion

I0T (ϕ) = inf
{1

2

∫ T

0

‖ġt‖2
dt : g ∈ H1

y , F (g) = ϕ
}
.This proves the LDP for (Y s,y).Notie that the rate funtion of Y measures distanes from the deterministi solution ψ just as in thelassial ase without interation, but the distane of ϕ from ψ is weighted by the interation betweenthe two paths.By means of the rate funtion, one an assoiate to Y s,y two funtions that determine the ost resp.energy of moving between points in the geometri landsape indued by the vetor �eld V . For t ≥ 0the ost funtion

Cs(y, z, t) = inf
f∈C0t: ft=z

Is,y
0t (f), y, z ∈ IRddetermines the asymptoti ost for the di�usion Y s,y to move from y to z in time t, and the quasi-potential

Qs(y, z) = inf
t>0

Cs(y, z, t)desribes its ost of going from y to z eventually.3.2 Large deviations priniple for the self-stabilizing di�usionWe are now in a position to prove large deviations priniples for ξ and X by showing that ξ and Y arelose in the sense of large deviations.3.4 Theorem. For any ε > 0 let xε
0, ξ

ε
0 ∈ IRd that onverge to some x0 ∈ IRd resp. y ∈ IRd as ε → 0.Denote by Xε the solution of (3.1) starting at xε

0. Let s ≥ 0, and denote by ξε the solution of (3.3)starting in ξε
0 with time parameter s, i.e.

ξε
t = ξε

0 +

∫ t

0

V (ξε
u) − bε,x0(u+ s, ξε

u) du+
√
εWt, t ≥ 0, (3.7)where bε,x0(t, x) = IE[Φ(x−Xε

t )].Then the di�usions (ξε)ε>0 satisfy on any time interval [0, T ] a large deviations priniple with good ratefuntion (3.6). 18



Proof. We shall show that ξ := ξε is exponentially equivalent to Y := Y s,y as de�ned by (3.4), whihhas the desired rate funtion, i.e. we prove that for any δ > 0 we have
lim sup

ε→0
ε log IP(ρ0T (ξ, Y ) ≥ δ) = −∞. (3.8)Without loss of generality, we may hoose R > 0 suh that xε

0, y ∈ BR(0) and that ψt(x0) does not leave
BR(0) up to time s + T , and denote by σR the �rst time at whih ξ or Y exit from BR(0). Then for
t ≤ σR

‖ξt − Yt‖ ≤ ‖ξ0 − y‖ +

∫ t

0

‖V (ξu) − V (Yu)‖ du+

∫ t

0

∥∥∥bε,xε
0(u + s, ξu) − Φ(Yu − ψu+s(x0))

∥∥∥ du (3.9)The �rst integral satis�es
∫ t

0

‖V (ξu) − V (Yu)‖ du ≤ KR

∫ t

0

‖ξu − Yu‖ du, t ≤ σR,due to the loal Lipshitz assumption. Let us deompose the seond integral. We have
∥∥∥bε,xε

0(u + s, ξu) − Φ(Yu − ψu+s(x0))
∥∥∥ ≤

∥∥∥bε,xε
0(u+ s, ξu) − Φ(ξu − ψu+s(x

ε
0))

∥∥∥

+ ‖Φ(ξu − ψu+s(x
ε
0)) − Φ(ξu − ψu+s(x0))‖

+ ‖Φ(ξu − ψu+s(x0)) − Φ(Yu − ψu+s(x0))‖ .Bounds for the seond and third term in this deomposition are easily derived. The last one is seen tobe bounded by K2R ‖ξu − Yu‖, sine ξ, Y as well as ψ are in BR(0) before time σR ∧ T . For the seondterm we also use the Lipshitz ondition to dedue that
‖Φ(ξu − ψu+s(x

ε
0)) − Φ(ξu − ψu+s(x0))‖ ≤ K2R ‖ψu+s(x

ε
0) − ψu+s(x0)‖ .As a onsequene of the �ow property for ψ this bound approahes 0 as ε→ 0 uniformly w.r.t. u ∈ [0, T ].By ombining these bounds and applying Gronwall's lemma, we �nd that

‖ξt − Yt‖ ≤ exp
{
2K2Rt

}(
‖ξ0 − y‖ +K2R

∫ t

0

‖ψu+s(x
ε
0) − ψu+s(x0)‖ du

+

∫ t

0

∥∥∥bε,xε
0(u+ s, ξu) − Φ(ξu − ψu+s(x

ε
0))

∥∥∥ du
) (3.10)for t ≤ σR. Sine ξ is bounded before σR the r.h.s. of this inequality tends to zero by Corollary 3.2.The exponential equivalene follows from the LDP for Y as follows. Fix δ > 0, and hoose ε0 > 0 suhthat the r.h.s. of (3.10) is smaller than δ for ε ≤ ε0. Then ‖ξt − Yt‖ > δ implies that at least one of ξtor Yt is not in BR(0), and if ξt /∈ BR(0) then Yt /∈ BR/2(0) if δ is small enough. Thus we an bound thedistane of ξ and Y by an exit probability of Y . For l > 0 let τl denote the di�usion Y 's time of �rstexit from Bl(0). Then, by Proposition 3.3,

lim sup
ε→0

ε log IP
(
ρ0T (ξ, Y ) > δ

)
≤ lim sup

ε→0
ε log IP(τR/2 ≤ T )

≤ − inf
{
Cs(y, z, t) : |z| ≥ R

2 , 0 ≤ t ≤ T
}
. (3.11)The latter expression approahes −∞ as R → ∞.Theorem 3.4 allows us to dedue two important orollaries. A partiular hoie of parameters yields anLDP for X , and the ε-dependene of the initial onditions permits us to onlude that the LDP holdsuniformly on ompat subsets, a fat that is ruial for the proof of an exit law in the following setion.The arguments an be found in [7℄.Let IPx0

(X ∈ ·) denote the law of the di�usion X starting at x0 ∈ IRd.19



3.5 Corollary. Let L ⊂ IRd be a ompat set.For any losed set F ⊂ C0T we have
lim sup

ε→0
ε log sup

x0∈L
IPx0

(X ∈ F ) ≤ − inf
x0∈L

inf
φ∈F

I0,x0

0T (φ),and for any open set G ⊂ C0T

lim inf
ε→0

ε log inf
x0∈L

IPx0
(X ∈ G) ≥ − sup

x0∈L
inf
φ∈G

I0,x0

0T (φ).Proof. Choosing xε
0 = ξε

0 and s = 0 implies ξε = Xε in Theorem 3.4, whih shows that X satis�es anLDP with rate funtion I0,x0

0T . Furthermore, this LDP allows for ε-dependent initial onditions. Thisimplies the uniformity of the LDP, as pointed out in the proofs of Theorem 5.6.12 and Corollary 5.6.15in [7℄. Indeed, the ε-dependene yields for all x0 ∈ IRd

lim sup
ε→0,y→x0

ε log IPy(X ∈ F ) ≤ − inf
φ∈F

I0,x0

0T (φ),for otherwise one ould �nd sequenes εn > 0 and yn ∈ IRd suh that εn → 0, yn → x0 and
lim sup

n→∞
εn log IPyn

(X ∈ F ) > − inf
φ∈F

I0,x0

0T (φ).But this ontradits the LDP.Now the uniformity of the upper large deviations bound follows exatly as demonstrated in the proof ofCorollary 5.6.15 in [7℄. The lower bound is treated similarly.The next orollary is just a onsequene of the ε-dependent initial onditions in the LDP for ξ.3.6 Corollary. Let L ⊂ IRd be a ompat set.For any losed set F ⊂ C0T we have
lim sup

ε→0
ε log sup

x0∈L
IP(ξs,x0 ∈ F ) ≤ − inf

x0∈L
inf
φ∈F

Is,x0

0T (φ),and for any open set G ⊂ C0T

lim inf
ε→0

ε log inf
x0∈L

IP(ξs,x0 ∈ G) ≥ − sup
x0∈L

inf
φ∈G

Is,x0

0T (φ).3.3 Exponential approximations under stability assumptionsThe aim of this subsetion is to exploit the fat that the inhomogeneity of the di�usion Y s,y is weakin the sense that its drift depends on time only through ψt+s(x0). If the dynamial system ψ̇ = V (ψ)admits an asymptotially stable �xed point xstable that attrats x0, then the drift of Y s,y beomes almostautonomous for large times, whih in turn may be used to estimate large deviations probabilities for
ξs,y. We make the following assumption. It will also be in fore in Setion 4, where it will keep us fromformulating results on exits from domains with boundaries ontaining ritial points of DV , in partiularsaddle points in the potential ase.3.7 Assumption.i) Stability: there exists a stable equilibrium point xstable ∈ IRd of the dynamial system

ψ̇ = V (ψ).20



ii) Convexity: the geometry indued by the vetor �eld V is onvex, i.e. the ondition (2.6) for Vholds globally:
〈h,DV (x)h〉 ≤ −KV (3.12)for h ∈ IRd s.t. ‖h‖ = 1 and x ∈ IRd.Under this assumption it is natural to onsider the limiting time homogeneous di�usion Y∞,y de�ned by

dY∞
t = V (Y∞

t )dt− Φ(Y∞
t − xstable)dt+

√
εdWt, Y∞

0 = y. (3.13)3.8 Lemma. Let L ⊂ IRd be ompat, and assume that xstable attrats all y ∈ L, i.e.
lim

t→∞
ψt(y) = xstable ∀y ∈ L.Then Y∞,y is an exponentially good approximation of Y s,y, i.e. for any δ > 0 we have

lim
r→∞

lim sup
ε→0

ε log sup
y∈L, s≥r

IP(ρ0T (Y s,y, Y∞,y) ≥ δ) = −∞.Proof. We have
‖Y s, y

t − Y∞,y
t ‖ ≤

∫ t

0

‖V (Y s, y
u ) − V (Y∞,y

u )‖du+

∫ t

0

‖Φ(Y s, y
u − ψs+u(y)) − Φ(Y∞,y

u − xstable)‖du.Let σs,y
R be the �rst time at whih Y s,y or Y∞,y exits from BR(0). For t ≤ σs,y

R , we may use the Lipshitzproperty of Φ and V , to �nd a onstant cR > 0 s.t.
‖Y s, y

t − Y∞
t ‖ ≤ cR

∫ t

0

‖Y s, y
u − Y∞

u ‖du+ cRTρ0T (ψs+·(y), xstable).By assumption the seond term onverges to 0 as s→ ∞, uniformly with respet to y ∈ L sine the �ow isontinuous with respet to the initial data. Hene, by Gronwall's lemma there exists some r = r(R, δ) > 0suh that for s ≥ r

sup
y∈L

sup
0≤t≤σs,y

R

‖Y s, y
t − Y∞

t ‖ < δ/2.We dedue that
IP(ρ0T (Y s, y, Y∞) ≥ δ/2) ≤ IP(τy

R/2 ≤ T ) ∀s ≥ r, y ∈ L,where for l > 0 τy
l denotes the �rst exit time of Y∞,y from Bl(0). Sending r,R → ∞ and appealing tothe uniform LDP for Y∞,y �nishes the proof, muh as the proof of Theorem 3.4.This exponential loseness of Y∞,y and Y s,y arries over to ξs,y under the aforementioned stability andonvexity assumption, whih enables us to sharpen the exponential equivalene proved in Theorem 3.4.In order to establish this improvement, we need a preparatory lemma that strengthens Corollary 3.2 touniform onvergene over the whole time axis. This uniformity is of ruial importane for the proof ofan exit law in the next setion and depends substantially on the strong onvexity assumption (3.12).3.9 Lemma. We have

lim
ε→0

bε,x0(t, x) = Φ(x− ψt(x0)),uniformly w.r.t. t ≥ 0 and w.r.t. x and x0 on ompat subsets of IRd.Proof. Let f(t) := IE(‖Zt‖2), where Zt = Xt − ψt(x0). In the proof of Lemma 3.1 we have seen that
f ′(t) ≤ 2 IE

[〈
Zt, V (Zt + ψt(x0)) − V (ψt(x0))

〉]
+ εd ≤ −2KV IE(‖Zt‖2

) + εd = −2KV f(t) + εd.This means that {t ≥ 0 : f ′(t) < 0} ⊃ {t ≥ 0 : f(t) > εd
2KV

}. Realling that f(0) = 0, this allowsus to onlude that f is bounded by εd
2KV

. Now an appeal to the proof of Corollary 3.2 �nishes theargument. 21



3.10 Proposition. Let L ⊂ IRd be ompat, and assume that xstable attrats all y ∈ L. Then Y∞,y isan exponentially good approximation of ξs,y, i.e. for any δ > 0 we have
lim

r→∞
lim sup

ε→0
ε log sup

y∈L, s≥r
IP(ρ0T (ξs,y, Y∞,y) ≥ δ) = −∞.Proof. Reall the proof of Theorem 3.4. For y ∈ L and s ≥ 0 we have

‖ξs,y
t − Y s,y

t ‖ ≤ exp
{
2K2Rt

}∫ t

0

‖bε,x0(u+ s, ξu) − Φ(ξu − ψu+s(x0))‖ du (3.14)for t ≤ σy,s
R , whih denotes the �rst time that ξs,y

t or Y s,y exits from BR(0). By Lemma 3.9, the integrandon the r.h.s. onverges to zero as ε → 0, uniformly w.r.t. s ≥ 0. Therefore, if we �x δ > 0, we mayhoose R = R(δ) su�iently large and ε0 > 0 suh that for ε ≤ ε0, and all s ≥ 0

IP(ρ0T (ξs,y , Y s,y) > δ) ≤ IP(τs,y
R/2 < T ) ≤ IP(τ∞,y

R/4 < T ) + IP(ρ0T (Y∞,y, Y s,y) > R/4),where for l > 0, 0 ≤ s ≤ ∞ τs,y
l denotes the �rst exit time of the di�usion Y s,y from the ball Bl(0). Bythe uniform LDP for Y∞,y and Lemma 3.8 the assertion follows.4 The exit problemAs a onsequene of the large deviations priniple, the trajetories of the self-stabilizing di�usion areattrated to the deterministi dynamial system ψ̇ = V (ψ) as noise tends to 0. The probabilities ofdeviating from ψ are exponentially small in ε, and the di�usion will ertainly exit from a domain withina ertain time interval if the deterministi path ψ exits. The problem of di�usion exit involves an analysisfor the rare event that the di�usion leaves the domain although the deterministi path stays inside, i.e.it is onerned with an exit whih is triggered by noise only. Clearly, the time of suh an exit shouldinrease as the noise intensity tends to zero. In this setion we shall derive the preise large deviationsasymptotis of suh exit times, i.e. we shall give an analogue of the well known Kramers-Eyring law fortime homogeneous di�usions.Let us brie�y reall this law, a detailed presentation of whih may be found in setion 5.7 of [7℄. Forfurther lassial results about the exit problem we refer to [8℄, [5℄, [6℄ and [17℄.A Brownian partile of intensity ε that wanders in a geometri landsape given by a potential U ismathematially desribed by the lassial time-homogeneous SDE
dZε

t = −∇U(Zε
t )dt+

√
εdWt, Zε

0 = x0 ∈ IRd .If x∗ is a stable �xed point of the system ẋ = −∇U(x) that attrats the initial ondition x0 and τεdenotes the exit time from the domain of attration of x∗, then the asymptotis of τε is desribed by thefollowing two relations:
lim
ε→0

ε log IE(τε) = Ū , (4.1)
lim
ε→0

IP
(
e(Ū−δ)/ε < τε < e(Ū+δ)/ε

)
= 1 ∀δ > 0. (4.2)Here Ū denotes the energy required to exit from the domain of attration of x∗. This law may roughlybe paraphrased by saying that τε behaves like exp Ū

ε as ε→ 0.Let us now return to the self-stabilizing di�usion Xε, de�ned by (3.1). Intuitively, exit times shouldinrease ompared to the lassial ase due to self-stabilization and the inertia it entails. We shall showthat this is indeed the ase, and prove a synonym of (4.1) and (4.2) for the self-stabilizing di�usion. Ourapproah follows the presentation in [7℄. 22



Let D be an open bounded domain in IRd in whih Xε starts, i.e. x0 ∈ D, and denote by
τε
D = inf{t > 0 : Xε

t ∈ ∂D}the �rst exit time from D. We make the following stability assumptions about D.4.1 Assumption.i) The unique equilibrium point in D of the dynamial system
ψ̇t = V (ψt) (4.3)is stable and given by xstable ∈ D. As before, ψt(x0) denotes the solution starting in x0. We assumethat limt→∞ ψt(x0) = xstable.ii) The solutions of

φ̇t = V (φt) − Φ(φt − xstable) (4.4)satisfy
φ0 ∈ D =⇒ φt ∈ D ∀t > 0 and lim

t→∞
φt = xstable,and all trajetories starting at the boundary ∂D onverge to the stable point xstable.Observe that for x0 ∈ D, ψt(x0) stays in the domain D at all times sine it satis�es (4.4).The desription of the exponential rate for the exit time of It� di�usions with homogeneous oe�ientswas �rst proved by Freidlin and Wentzell via an exploitation of the strong Markov property. The self-stabilizing di�usion Xε is also Markovian, but it is inhomogeneous, whih makes a diret appliation ofthe Markov property di�ult. However, the inhomogeneity is weak under the stability Assumption 4.1.It implies that the law of Xε

t onverges as time tends to in�nity, and large deviations probabilites for
Xε may be approximated by those of Y∞ in the sense of Proposition 3.10. Sine Y∞ is de�ned in termsof an autonomous SDE, its exit behavior is aessible through lassial results. The rate funtion thatdesribes the LDP for Y∞ is given by

I∞,y
0T (ϕ) =

{
1
2

∫ T

0
‖ϕ̇t − V (ϕt) + Φ(ϕt − xstable)‖2

dt, if ϕ ∈ H1
y ,

∞, otherwise . (4.5)The orresponding ost funtion and quasi potential are de�ned in an obvious way and denoted by C∞and Q∞, respetively. The minimal energy required to onnet the stable equilibrium point xstable to theboundary of the domain is assumed to be �nite, i.e.
Q∞ := inf

z∈∂D
Q∞(xstable, z) <∞.The following two theorems state our main result about the exponential rate of the exit time and theexit loation.4.1 Theorem. For all x0 ∈ D and all η > 0, we have

lim sup
ε→0

ε log
{
1 − IPx0

(e(Q∞
−η)/ε < τε

D < e(Q∞
+η)/ε)

}
≤ −η/2, (4.6)and

lim
ε→0

ε log IEx0
(τε

D) = Q∞. (4.7)4.2 Theorem. If N ⊂ ∂D is a losed set satisfying infz∈N Q∞(xstable, z) > Q∞, then it does not see theexit point: for any x0 ∈ D

lim
ε→0

IPx0
(Xε

τD
∈ N) = 0.The rest of this setion is devoted to the proof of these two theorems. In the subsequent setion, theseresults are illustrated by examples whih show that the attration part of the drift term in a di�usionmay ompletely hange the behavior of the paths, i.e. the self-stabilizing di�usion stays in the domainfor a longer time than the lassial one, and it typially exits at a di�erent plae.23



4.1 Enlargement of the domainThe self-stabilizing di�usion lives in the open, bounded domain D whih is assumed to ful�ll the pre-viously stated stability onditions. In order to derive upper and lower bounds of exit probabilities, weneed to onstrut an enlargement of D that still enjoys the stability properties of Assumption 4.1 ii).This is possible beause the family of solutions to the dynamial system (4.4) de�nes a ontinuous �ow.For δ > 0 we denote by Dδ := {y ∈ IRd : dist(y,D) < δ} the open δ-neighborhood of D. The �ow φis ontinuous, hene uniformly ontinuous on D due to boundedness of D, and sine the vetor �eld isloally Lipshitz. Hene, if δ is small enough, the trajetories φt(y) onverge to xstable for y ∈ Dδ, i.e.for eah neighborhood V ⊂ D of xstable there exists some T > 0 suh that for y ∈ Dδ we have φt(y) ∈ Vfor all t ≥ T . Moreover, the joint ontinuity of the �ow implies that, if we �x c > 0, we may hoose
δ = δ(c) > 0 suh that

sup
{

dist(φt(y), D) : t ∈ [0, T ], y ∈ Dδ
}
< c.Let

Oδ =
{
y ∈ IRd : sup

t∈[0,T ]

dist(φt(y), D) < c, φT (y) ∈ V
}
.Then Oδ is a bounded open set whih ontains Dδ and satis�es Assumption 4.1 ii). Indeed, if δ is smallenough, the boundary of Oδ is not a harateristi boundary, and ∩δ>0Oδ = D.4.2 Proof of the upper bound for the exit timeFor the proof of the two main results, we suessively proeed in several steps and establish a seriesof preparatory estimates that shall be ombined afterwards. In this subsetion, we onentrate on theupper bound for the exit time from D, and establish inequalities for the probability of exeeding thisbound and for the mean exit time.In the sequel, we denote by IPs, y the law of the di�usion ξs, y, de�ned by (3.3). Reall that by theresults of the previous setion, ξs, y satis�es a large deviations priniple with rate funtion Is,y. Thefollowing ontinuity property of the assoiated ost funtion is the analogue of Lemma 5.7.8 in [7℄ forthis inhomogeneous di�usion. The proof is omitted.4.3 Lemma. For any δ > 0 and s ∈ [0,∞), there exists ̺ > 0 suh that

sup
x,y∈B̺(xstable)

inf
t∈[0,1]

Cs(x, y, t) < δ (4.8)and
sup

(x,y)∈Γ

inf
t∈[0,1]

Cs(x, y, t) < δ, (4.9)where Γ = {(x, y) : infz∈∂D(‖y − z‖ + ‖x− z‖) ≤ ̺}.Let us now present two preliminary lemmas on exit times of ξs, y. In slight abuse of notation, we denoteexit times of ξs, y also by τε
D, whih ould formally be justi�ed by assuming to look solely at the oordinateproess on path spae and swithing between measures instead of proesses. On the other hand, thisnotation is onvenient when having in mind that ξs, y desribes the law of Xε restarted at time s, andthat Xε may be reovered from ξs, y for ertain parameters.4.4 Lemma. For any η > 0 and ̺ > 0 small enough, there exist T0 > 0, s0 > 0 and ε0 > 0 suh that

inf
y∈B̺(xstable)

IPs, y(τε
D ≤ T0) ≥ e−(Q

∞
+η)/ε for all ε ≤ ε0 and s ≥ s0.24



Proof. Let ̺ be given aording to Lemma 4.3. The orresponding result for the time homogeneousdi�usion Y∞,y is well known (see [7℄, Lemma 5.7.18), and will be arried over to ξs, y using the exponentialapproximation of Proposition 3.10. Let IP∞, y denote the law of Y∞,y. The drift of Y∞,y is loallyLipshitz by the assumptions on V and Φ, and we may assume w.l.o.g. that it is even globally Lipshitz.Otherwise we hange the drift outside a large domain ontaining D.If δ > 0 is small enough suh that the enlarged domain Oδ satis�es Assumption 4.1 ii), Lemma 5.7.18 in[7℄ implies the existene of ε1 and T0 suh that
inf

y∈B̺(xstable)
IP∞, y(τε

Oδ ≤ T0) ≥ e−(Q
δ

∞
+η/3)/ε for all ε ≤ ε1. (4.10)Here Q δ

∞ denotes the minimal energy
Q

δ

∞ = inf
z∈∂Oδ

Q∞(xstable, z).The ontinuity of the ost funtion arries over to the quasi-potential, i.e. there exists some δ0 > 0 suhthat |Q δ

∞ −Q∞| ≤ η/3 for δ ≤ δ0.Now let us link the exit probabilities of Y∞,y and ξs, y. We have for s ≥ 0

IPs, y(τ
ε
D ≤ T0) ≥ IP({ξs, y exits from D before T0} ∩ {ρ0,T0

(ξs, y, Y∞,y) ≤ δ})
≥ IP∞, y(τε

Dδ ≤ T0) − IP(ρ0,T0
(ξs, y, Y∞) ≥ δ). (4.11)Moreover, by the exponential approximation we may �nd ε2 > 0 and s0 > 0 suh that

sup
y∈B̺(xstable)

IP(ρ0,T0
(ξs, y, Y∞) ≥ δ) ≤ e−(Q

δ

∞
+η/2)/ε ∀s ≥ s0, ε ≤ ε2.Sine Dδ ⊂ Oδ, we dedue that for ε ≤ ε0 = ε1 ∧ ε2 and s ≥ s0

inf
y∈B̺(xstable)

IPs, y(τε
D ≤ T0) ≥ e−(Q

δ

∞
+η/3)/ε − e−(Q

δ

∞
+η/2)/ε ≥ e−(Q

δ

∞
+η)/ε.By similar arguments, we prove the exponential smallness of the probability of too long exit times. Let

Σ̺ = inf{t ≥ 0 : ξs, y
t ∈ B̺(xstable) ∪ ∂D}, where ̺ is small enough suh that B̺(xstable) is ontained inthe domain D.4.5 Lemma. For any ̺ > 0 and K > 0 there exist ε0 > 0, T1 > 0 and r > 0 suh that

sup
y∈D, s≥r

IPs, y(Σ̺ > t) ≤ e−K/ε ∀t ≥ T1.Proof. As before, we use the fat that a similar result is already known for Y∞,y. For δ > 0 smallenough, let
Σδ

̺ = inf{t ≥ 0 : Y∞
t ∈ B̺−δ(xstable) ∪ ∂Oδ}.By Lemma 5.7.19 in [7℄, there exist T1 > 0 and ε1 > 0 suh that

sup
y∈D

IP∞, y(Σδ
̺ > t) ≤ e−K/ε ∀t ≥ T1 ε ≤ ε1.Now the assertion follows from

sup
y∈D

IPs, y(Σ̺ > T1) ≤ sup
y∈D

IP∞, y(Σδ
̺ > T1) + sup

y∈D
IP(ρ0,T1

(ξs, y, Y∞,y) > δ),sine the last term is exponentially negligible by Proposition 3.10.25



The previous two lemmas ontain the essential large deviations bounds required for the proof of thefollowing upper bound for the exit time of Xε.4.6 Proposition. For all x0 ∈ D and η > 0 we have
lim sup

ε→0
ε log IPx0

(
τε
D ≥ e(Q∞

+η)/ε
)

≤ −η/2, (4.12)and
lim sup

ε→0
ε log IEx0

[
τε
D

]
≤ Q∞. (4.13)Proof. The proof onsists of a areful modi�ation of the arguments used in Theorem 5.7.11 in [7℄. ByLemma 4.4 and Lemma 4.5, there exist T̃ = T0 + T1 > 0, ε0 > 0 and r0 > 0 suh that for T ≥ T̃ , ε ≤ ε0and r ≥ r0 we have

qr
T := inf

y∈D
IPr, y(τε

D ≤ T ) ≥ inf
y∈D

IPr, y

(
Σ̺ ≤ T1

)
inf

y∈B̺(xstable), s≥r
IPs, y

(
τε
D ≤ T0

) (4.14)
≥ exp

{
− Q∞ + η/2

ε

}
=: q∞T .Moreover, by the Markov property of ξs, y, we see that for k ∈ IN

IPx0

(
τε
D > 2(k + 1)T

)
=

[
1 − IPx0

(
τε
D ≤ 2(k + 1)T | τε

D > 2kT
)]

IPx0

(
τε
D > 2kT

)

≤
[
1 − inf

y∈D
IP2kT,y

(
τε
D ≤ 2T

)]
IPx0

(
τε
D > 2kT

)

≤
(
1 − q2kT

2T

)
IPx0

(
τε
D > 2kT

)
,whih by indution yields

IPx0

(
τε
D > 2kT

)
≤

k−1∏

i=0

(
1 − q2iT

2T

)
. (4.15)Let us estimate eah term of the produt separately. We have

1 − q2iT
2T = sup

y∈D
IP2iT,y

(
τε
D > 2T

)
≤ sup

y∈D
IP2iT,y

(
τε
D > T

)
sup
y∈D

IP(2i+1)T,y

(
τε
D > T

)

≤ sup
y∈D

IP(2i+1)T,y

(
τε
D > T

)
.By hoosing T large enough, we may replae the produt in (4.15) by a power. Indeed, for T > max(T̃ , r0)we have (2i+ 1)T ≥ r0 for all i ∈ IN, whih by (4.14) results in the uniform upper bound

1 − q2iT
2T ≤ 1 − q

(2i+1)T
T ≤ 1 − q∞T .By plugging this into (4.15), we obtain a �geometri� upper bound for the expeted exit time, namely

IEx0

[
τε
D

]
≤ 2T

[
1 +

∞∑

k=1

sup
y∈D

IPx0

(
τε
D ≥ 2kT

)
]

≤ 2T

[
1 +

∞∑

k=1

k−1∏

i=0

(
1 − q2iT

2T

)
]

≤ 2T

[
1 +

∞∑

k=1

(
1 − q∞T

)k

]
=

2T

q∞T
.This proves the laimed asymptotis of the expeted exit time. Furthermore, an appliation of Cheby-hev's inequality shows that

IPx0

(
τε
D ≥ e(Q∞

+η)/ε
)

≤ IEx0

[
τε
D

]

e(Q∞
+η)/ε

≤ 2T
e−(Q

∞
+η)/ε

q∞T
= 2T e−η/2ε,whih is the asserted upper bound of the exit probability.26



4.3 Proof of the lower bound for the exit timeIn order to establish the lower bound of the exit time, we prove a preliminary lemma whih estimatesthe probability to exit from the domain D \B̺(xstable) at the boundary of D. This probability is seen tobe exponentially small sine the di�usion is attrated to the stable equilibrium point. Let us denote by
S̺ the boundary of B̺(xstable), and reall the de�nition of the stopping time Σ̺.4.7 Lemma. For any losed set N ⊂ ∂D and η > 0, there exist ε0 > 0, ̺0 > 0 and r0 > 0 suh that

ε log sup
y∈S2̺, s≥r

IP
(
ξs, y
Σ̺

∈ N
)

≤ − inf
z∈N

Q∞(xstable, z) + ηfor all ε ≤ ε0, r ≥ r0 and ̺ ≤ ̺0.Proof. For δ > 0 we de�ne a subset Sδ of Dδ by setting
Sδ := Dδ \ {y ∈ IRd : dist(y,N) < δ}.

PSfrag replaementsN
Sδ

∂D

Furthermore, let
N δ := ∂Sδ ∩ {y ∈ IRd : dist(y,N) ≤ δ}.

Sδ ontains the stable equilibrium point xstable, and as suh it isunique in Sδ if δ is small enough.The proof of Lemma 5.7.19 and Lemma 5.7.23 in [7℄ an beadapted to the domain Sδ, sine an exit of the limiting di�usion
Y∞ from the domain Oδ de�ned in setion 4.1 always requires anexit from Sδ. Hene, there exist ε1 > 0 and ̺1 > 0 suh that

ε log sup
y∈S2̺

IP∞, y

(
Y∞

Σδ
̺
∈ N δ

)
≤ − inf

z∈N δ
Q∞(xstable, z) +

η

2for ε ≤ ε1 and ̺ ≤ ̺1, where Σδ
̺ denotes the �rst exit time from the domain Sδ \ B̺(xstable). By theontinuity of the quasi-potential, we have

− inf
z∈N δ

Q∞(xstable, z) +
η

2
≤ − inf

z∈N
Q∞(xstable, z) + ηif δ > 0 is small enough. Therefore, it is su�ient to link the result about the limiting di�usion to theorresponding statement dealing with ξs, y. By Lemma 4.5, we an �nd T1 > 0, ε1 > 0 and r1 > 0 suhthat

ε log sup
y∈S2̺, s≥r

IPs, y

(
Σ̺ > T1

)
≤ − inf

z∈N
Q∞(xstable, z) +

η

2
∀ε ≤ ε1, r ≥ r1. (4.16)If Σ̺ ≤ T1 and ρ0,T1

(ξs, y, Y∞) ≤ δ, then {ξs, y
Σ̺

∈ N} is ontained in {Y∞
Σδ

̺
∈ N δ}. Thus,

IP
(
ξs, y
Σ̺

∈ N
)

≤ IP
(
ξs, y
Σ̺

∈ N, Σ̺ < T1

)
+ IPs, y(Σ̺ ≥ T1)

≤ IP
(
Y∞,y

Σδ
̺

∈ N δ
)

+ IP
(
ρ0,T1

(ξs, y, Y∞,y) ≥ δ
)

+ IPs, y(Σ̺ ≥ T1).By (4.16) and Proposition 3.10, the logarithmi asymptotis of the sum on the r.h.s. is dominated bythe �rst term, i.e. the lemma is established. �We are now in a position to establish the lower bound for the exit time whih omplements Proposition 4.6and ompletes the proof of Theorem 4.1.4.8 Proposition. There exists η0 > 0 suh that for any η ≤ η0

lim sup
ε→0

ε log IPx0

[
τε
D < e(Q∞

−η)/ε
]

≤ −η/2 (4.17)and
lim inf

ε→0
ε log IEx0

[
τε
D

]
≥ Q∞. (4.18)27



Proof. In a �rst step we apply Lemma 4.7 and an adaptation of Lemma 5.7.23 in [7℄. The latter explainsthat the behavior of an It� di�usion on small time intervals is similar to the behavior of the martingalepart, whih in our situation is simply given by √
εWt. We �nd r0 > 0, T > 0 and ε0 > 0 suh that for

ε ≤ ε0

sup
y∈S2̺, s≥r0

IP
(
ξs, y
Σ̺

∈ ∂D
)

≤ e−(Q
∞

−η/2)/ε,

sup
y∈D, s≥r0

IP
(

sup
0≤t≤T

‖ξs, y
t − y‖ ≥ ̺

)
≤ e−(Q

∞
−η/2)/ε.

x

ϑ1

τ0

τ1

ϑ2

τ2

D

In the sequel, we shall proeed as follows. Firstly, we wait for alarge period of time r1 until the di�usion beomes �su�ientlyhomogeneous�, whih is possible thanks to the stability assump-tion. Sine xstable attrats all solutions of the deterministisystem, we may �nd r1 ≥ r0 suh that ψr(x0) ∈ B̺(xstable) for
r ≥ r1. Seondly, after time r1, we employ the usual argumentsfor homogeneous di�usions. Following [7℄, we reursively de�netwo sequenes of stopping times that shall serve to trak thedi�usion's exursions between the small ball B̺(xstable) aroundthe equilibrium point and the larger sphere S2̺ = ∂B2̺(xstable),before it �nally exits from the domain D.Set ϑ0 = r1, and for m ≥ 0 let

τm = inf{t ≥ ϑm : Xε
t ∈ B̺ ∪ ∂D},and

ϑm+1 = inf{t > τm : Xε
t ∈ S2̺}.Let us deompose the event {τε

D ≤ kT + r1}. We have
IPx0

(
τε
D ≤ kT + r1

)
≤ IPx0

(
{τε

D ≤ r1} ∪ {Xε
r1
/∈ B2̺(xstable)}

)
+ sup

y∈S2̺, s≥r1

IPs, y(τε
D ≤ kT ). (4.19)The �rst probability on the r.h.s. of this inequality tends to 0 as ε→ 0. Indeed, by the large deviationspriniple for Xε on the time interval [0, r1], there exist η0 > 0 and ε2 > 0 suh that

ε log IPx0

(
{τε

D ≤ r1} ∪ {Xε
r1
/∈ B2̺(xstable)}

)
≤ −η/2for ε ≤ ε2 and η ≤ η0. For the seond term in (4.19), we an observe two di�erent ases: either thedi�usion exits from D during the �rst k exits from D \ B̺(xstable), or the minimal time spent betweentwo onseutive exits is smaller than T . This reasoning leads to the bound

IPs, y(τε
D ≤ kT ) ≤

k∑

m=0

IPs, y

(
τε
D = τm

)
+ IPs, y

(
min

1≤m≤k
(ϑm − τm−1) ≤ T

)
.Let us now link these events to the probabilities presented at the beginning of the proof. We have

sup
y∈S2̺, s≥r1

IPs, y(τε
D = τm) ≤ sup

y∈S2̺, s≥r0

IPs, y(ξs, y
Σ̺

∈ ∂D),and
sup

y∈S2̺, s≥r1

IPs, y((ϑm − τm−1) ≤ T ) ≤ sup
y∈S2̺, s≥r0

IPs, y( sup
0≤t≤T

‖ξs, y
t − y‖ ≥ ̺),whih yields the bound

sup
y∈S2̺, s≥r1

IPs, y(τε
D ≤ kT ) ≤ (2k + 1)e−(Q

∞
−η/2)/ε.28



Thus, by hoosing k = ⌊(e(Q∞
−η)/ε − r1)/T ⌋+ 1, we obtain from (4.19)

IPx0
(τε

D ≤ e(Q∞
−η)/ε) ≤ e−η/2ε + 5T−1e−η/2ε,i.e. (4.17) holds. Moreover, by using Chebyhev's inequality, we obtain the laimed lower bound for theexpeted exit time. Indeed, we have

IEx0
(τε

D) ≥ e(Q∞
−η)/ε(1 − IPx0

(τε
D ≤ e(Q∞

−η)/ε)) ≥ e(Q∞
−η)/ε(1 − (1 + 5T−1)e−η/2ε),whih establishes (4.18). �We end this setion with the proof of Theorem 4.2 about the exit loation.Proof of Theorem 4.2. We use arguments similar to the ones of the preeding proof. Let

Q∞(N) = inf
z∈N

Q∞(xstable, z),and assume w.l.o.g. that Q∞ < Q∞(N) < ∞. Otherwise, we may replae Q∞(N) in the following bysome onstant larger than Q∞. As in the preeding proof, we may hoose T > 0, r0 > 0 and ε0 > 0 suhthat
sup

y∈S2̺, s≥r0

IPs, y(ξs, y
Σ̺

∈ ∂N) ≤ e−(Q
∞

(N)−η/2)/ε ∀ε ≤ ε0,

sup
y∈D, s≥r0

IPs, y( sup
0≤t≤T

‖ξs, y
t − y‖ ≥ ̺) ≤ e−(Q

∞
(N)−η/2)/ε ∀ε ≤ ε0.It su�es to study the event A = {τε

D ≤ kT + r0} ∩ {Xε
τε

D
∈ N} for positive integers k. We see that

IPx0
(A) ≤ IPx0

(Xε
r0
/∈ B2̺(xstable)) + sup

y∈S2̺, s≥r0

IPs, y(τε
D ≤ kT )

≤ IPx0
(Xε

r0
/∈ B2̺(xstable)) +

k∑

m=0

IPs, y(τε
D = τm, ξ

s, y
τε

D
∈ N)

+ IPs, y( min
1≤m≤k

(ϑm − τm−1) ≤ T )

≤ IPx0
(Xε

r0
/∈ B2̺(xstable)) + (2k + 1)e−(Q

∞
(N)−η/2)/ε.The hoie k = ⌊(e(Q∞

(N)−η)/ε − r0)/T ⌋+ 1 yields
IPx0

(A) ≤ IPx0
(Xε

r0
/∈ B2̺(xstable)) + 5T−1e−η/2ε.This implies that IPx0

(τε
D ≤ e(Q∞

(N)−η)/ε, Xε
τε

D
∈ N) → 0 as ε → 0. Now hoose η small enough suhthat Q∞(N)−η > Q∞+η. Then Proposition 4.6 states that the exit time of the domainD is smaller than

e(Q∞
+η)/ε with probability lose to 1. The ombination of these two results implies IPx0

(Xε
τε

D
∈ N) → 0as ε→ 0.5 The gradient ase: examplesThe strutural assumption about Φ, namely its rotational invariane as stated in (2.4), implies that Φis always a potential gradient. In fat, this assumption means that Φ is the gradient of the positivepotential

A(x) =

∫ ‖x‖

0

φ(u)du.29



In this setion, we make the additional assumption that the seond drift omponent given by the vetor�eld V is also a potential gradient, whih brings us bak to the very lassial situation of gradienttype time homogeneous It� di�usions. In this situation, quasi potentials and exponential exit rates maybe omputed rather expliitly and allow for a good illustration of the e�et of self-stabilization on theasymptotis of exit times.We assume from now on that V = −∇U is the gradient of a potential U on IRd. Then the drift of thelimiting di�usion Y∞ de�ned by (3.13) is also a potential gradient, that is
b(x) := V (x) − Φ(x− xstable) = −∇(U(x) + A(x − xstable)).A simple onsequene of Theorem 3.1 in [8℄ allows one to ompute the quasi-potential expliitly in thissetting.5.1 Lemma. Assume that V = −∇U . Then for any z ∈ D,

Q∞(xstable, z) = 2(U(z)− U(xstable) + A(z − xstable)).In partiular,
Q∞ = inf

z∈∂D
2(U(z) − U(xstable) + A(z − xstable)).Observe that the exit time for the self-stabilizing di�usion is stritly larger than that of the lassialdi�usion de�ned by

dZε
t = V (Zε

t )dt+
√
εdWt, Zε

0 = x0.Indeed, by the theory of Freidlin and Wentzell,
lim
ε→0

ε log IEx0
(τε

D(Zε)) = inf
z∈∂D

2(U(z)− U(xstable)) < Q∞ = lim
ε→0

ε log IEx0
(τε

D(Xε)).The exit problem is in fat ompletely di�erent if we ompare the di�usions with or without self-attration. We have already seen that the exponential rate is larger in the attration ase. Let usnext see by some examples that the exit loation may hange due to self-stabilization.5.1 The general one-dimensional aseIn this subsetion we on�ne ourselves to one-dimensional self-stabilizing di�usions. In dimension one,the strutural assumptions onerning Φ and V are always granted, and we may study the in�uene ofself-stabilization on exit laws in a general setting.Let a < 0 < b, and assume for simpliity that the unique stable equilibrium point is the origin 0. Denoteby U(x) = −
∫ x

0 V (u)du the potential that indues the drift V . As seen before, the interation drift isthe gradient of the potential A(x) =
∫ |x|

0 Φ(u)du. Sine we are in the gradient situation, the exponentialrate for the mean exit time from the interval [a, b] an be omputed expliitly.If we denote by τx(Xε) = inf{t ≥ 0 : Xε
t = x} the �rst passage time of the level x for the proess Xε and

τI = τa ∧ τb, then the exit law of the lassial di�usion Zε (i.e. without self-stabilization) is desribed by
lim
ε→0

IP0(e
(Q∞

0
−η)/ε < τI(Z

ε) < e(Q
∞

0
+η)/ε) = 1,and

lim
ε→0

ε log IE0(τI(Z
ε)) = Q∞

0 ,where Q∞
0 = 2 min(U(a), U(b)). Moreover, if we assume that U(a) < U(b), then IP0(τI(Z

ε) = τa(Zε)) →
1 as ε→ 0.The piture hanges ompletely if we introdue self-stabilization. The quasi-potential beomes

Q∞
1 = 2 min(U(a) + A(a), U(b) + A(b)) > Q∞

0 ,30



so the mean exit time of Xε from the interval I is stritly larger ompared to that of Zε. This resultorresponds to what intuition suggests: the proess needs more work and onsequently more time toexit from a domain if it is attrated by some law onentrated around the stable equilibrium point.Furthermore, if a and b satisfy
A(b) −A(a) < U(a) − U(b),we observe that IP0(τI(X

ε) = τb(X
ε)) → 1, i.e. the di�usion exits the interval at the point b. Thus, weobserve the somehow surprising behavior that self-stabilization hanges the exit loation from the left tothe right endpoint of the interval.5.2 An example in the planeIn this subsetion, we give another expliit example in dimension two, in order to illustrate hanges ofexit loations in more detail.
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Figure 1: Potentials U (left piture) and U + A (rightpiture).
Let V = −∇U , where

U(x, y) = 6x2 + 1
2y

2,and let us examine the exit problem for the elliptidomain
D = {(x, y) ∈ IR2 : x2 + 1

4y
2 ≤ 1}.The unique stable equilibrium point is the origin

xstable = 0.The asymptoti mean exit time of the di�usion Zε
tstarting in 0 is given by lim

ε→0
ε log IE0(τ

ε
D(Zε)) = 4,sine the minimum of the potential on ∂D is reahed if y = ±2 and x = 0. Let us now fous on its exitloation, and denote N(x,y) = ∂D ∩ B̺((x, y)). The di�usion exits asymptotially in the neighborhood

N(0,2) with probability lose to 1/2 and in the neighborhood N(0,−2) with the same probability.PSfrag replaements Exit loation of thelassial di�usionExit loation of theself-stabilizing di�usion
Now we look how self-stabilization hanges the pi-ture. For the interation drift we hoose

Φ(x, y) = ∇A(x, y), with A(x, y) = 2x2 + 2y2.Firstly, the self-stabilizing di�usion Xε startingin 0 needs more time to exit from D, namely
lim
ε→0

ε log IE0(τ
ε
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