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Summary. We consider a random dynamical system describing the diffusion of a
small-noise Brownian particle in a double-well potential with a periodic perturbation
of very large period. According to the physics literature, the system is in stochastic
resonance if its random trajectories are tuned in an optimal way to the deterministic
periodic forcing. The quality of periodic tuning is measured mostly by the amplitudes
of the spectral components of the random trajectories corresponding to the forcing
frequency. Reduction of the diffusion dynamics in the small noise limit to a Markov
chain jumping between its meta-stable states plays an important role.

We study two different measures of tuning quality for stochastic resonance, with
special emphasis on their robustness properties when passing to the reduced dy-
namics of the Markov chains in the small noise limit. The first one is the physi-
cists favourite, spectral power amplification. It is analyzed by means of the spectral
properties of the diffusion’s infinitesimal generator in a framework where the sys-
tem switches every half period between two spatially antisymmetric potential states.
Surprisingly, resonance properties of diffusion and Markov chain differ due to the
crucial significance of small intra-well fluctuations for spectral concepts. To avoid
this defect, we design a second measure of tuning quality which is based on the
pure transition mechanism between the meta-stable states. It is investigated by re-
fined large deviation methods in the more general framework of smooth periodically
varying potentials, and proves to be robust for the passage to the reduced dynamics.

1 Introduction: model reduction and resonance

On an appropriate probability space (Ω,F ,P) we consider a one-dimensional

diffusion Xε,T = (Xε,T
t )t≥0 driven by the stochastic differential equation

dXε,T
t = −U ′(Xε,T

t ,
t

T
)dt+

√
εdWt, Xε,T

0 = x ∈ R, t ≥ 0, (1)



2 S. Herrmann, P. Imkeller, and I. Pavlyukevich

where W is a standard Brownian motion, and ε a small noise intensity. The
potential U is supposed to be double-well in the spatial coordinate. It is tem-
porally periodic with period 1, i.e. U(·, t) = U(·, t + 1), for any t ≥ 0. U ′

is used to denote the derivative in x. The positive parameter T stand for
the period of the deterministic perturbation. As an example for U one can
take U(x, t) = U0(x) + ax sin 2πt, x ∈ R, t ≥ 0, with a symmetric potential

U0 = x4

4 − x2

2 , x ∈ R, and a small enough amplitude a to ensure that U does
not degenerate to a one-well potential.

Given a large period T , we will be interested in periodicity properties of the
trajectories of our system (1), in particular to have a mathematically precise
concept of how well they are able to follow the deterministic periodic excita-
tion in dependence on the noise intensity ε. It is intuitively clear that if ε is
very small, trajectories will almost never be able to leave the well in which
they start, and stay close to the starting well’s minimum (see Fig.1 (l.)). If
ε is very large, the energy of the particle is sufficient to trigger some chaotic
changing between the two wells. There will be an intermediate range of small
intensities, at which trajectories are more or less close to the deterministic pe-
riodic function describing the temporally varying energetically most favorable
position in the potential landscape given by the minimum of the deeper of
the two wells (see Fig.1 (r.), [Fre00]). The crucial questions to be answered in
the sequel are the following. Given T large, for which intensity ε(T ) will the
periodicity of the system’s trajectories be optimal? And how can we measure
the quality of periodicity?

The quasi-deterministic behaviour the trajectories exhibit for small noise
raises another question which is very significant since it indicates a route to
reduction of complexity relevant for high dimensional systems: is it possible
to study the periodic tuning properties of the diffusion by considering instead
a simplified two-state Markov chain model, which catches the diffusion’s ef-
fective dynamics?

T 2T

−1

1

T 2T

−1

1

Fig. 1. Sample paths of (1) for small (l.) and ‘optimal’ (r.) values of ε

This approach was extensively studied by physicists. In their pioneering
theoretical paper [MW89] McNamara and Wiesenfeld propose a two-state
model of stochastic resonance in which the small-noise diffusion in a double-
well potential in adiabatic limit is replaced by a two-state Markov process.
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Along with (1) the inhomogeneous Markov chain Y ε,T is considered, which
possesses the 1-periodic infinitesimal generator

Qε,T (t) =

(
−ϕ( tT ) ϕ( tT )
ψ( tT ) −ψ( tT )

)
(2)

with the infinitesimal transition rates ϕ and ψ given by time-perturbed
Kramers-Eyring law [Kra40]

ϕ(t) =
1

2π

√
|U ′′

0 (0)|U ′′
0 (1)e−

2
ε
(∆U+a sin 2πt),

ψ(t) =
1

2π

√
|U ′′

0 (0)|U ′′
0 (1)e−

2
ε
(∆U−a sin 2πt), t ≥ 0,

(3)

where ∆U = 1
4 is the height of the potential barrier of the unperturbed

potential U0. Kramers obtained his law heuristically in the autonomous case,
i.e. for a = 0.

To measure periodicity of the random trajectories of either the diffu-
sion or the Markov chain, we first take the so-called coefficient of spec-
tral power amplification (SPA), one of the physicists’ favourite characteris-
tics, see e.g. [BPSV83, MW89, DLM+95, GHJM98, ANMS99, WJ98]. It is
based on the power spectrum of the average trajectories with respect to the
equilibrium of the homogenized Markov processes (Xε,T

Tt , t (mod 1))t≥0 resp.

(Y ε,TTt , t (mod 1))t≥0. For the diffusion (1) with equilibrium µ it is defined by

ηX(ε, T ) =

∣∣∣∣
∫ 1

0

Eµ(X
ε,T
Ts ) · e2πis ds

∣∣∣∣
2

. (4)

The function ηX depending on noise intensity and the period of time variation
of the potential has a clear physical meaning. It describes the amount of energy
carried by the averaged path of the diffusion with noise amplitude ε on the
frequency 2π

T . The expectation Eµ indicates that averages are taken with
respect to µ. This will be explained in detail later.

Fig. 2 borrowed from [ANMS99] where Ω corresponds to our 2π
T and D

to the diffusion intensity ε shows that physicists expect a local maximum of
the function ε 7→ ηX (ε, ·). The random paths have their strongest periodic
component corresponding to the frequency of the periodic input at the value
of ε for which the maximum is taken. In fact, Fig. 2 does not show the SPA
coefficient of the diffusion itself, but of its effective dynamics given by the two-
state Markov chain Y ε,T . It is a priori believed in the physical literature that
the effective dynamics adequately describes the properties of the diffusion in
the small noise limit.

If periodic tuning is measured by SPA, to determine the ‘optimal tuning’
or stochastic resonance point means to find the argument ε = ε(T ) of a local
maximum of ε 7→ ηX (ε, ·) for large T . In section 2 we address the problem
of finding the stochastic resonance point for the diffusion by means of the
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Fig. 2. SPA coefficient as a function of noise amplitude is supposed to have a
well pronounced maximum depending on the frequency of periodic perturbation
[ANMS99].

passage to its effective dynamics in the small noise limit. We shall see that
determining the optimal tuning intensity ε(T ) for the Markov chain is a rel-
atively easy task. It turns out, however, that already in the very simple case
of a potential hopping every half period between two spatially antisymmetric
double-well states with wells of different depths, due to the crucial importance
of the diffusion’s inter-well fluctuations, i.e. small fluctuations in the vicinity
of the potential’s minima, at low noise, diffusion and Markov chain exhibit
different resonance features. In contradiction to physicists’ intuition, the SPA
notion of resonance is therefore not robust when passing to the reduced model.
In section 3 we therefore propose a concept of measuring the quality of peri-
odic tuning which is based on the pure mechanism of transition between the
domains of attraction of the potential’s local minima, and therefore fails to
have this robustness defect.

2 Periodically switching potentials and the spectral

approach

To catch the essentials of the effect and at the same time to simplify the
problem we will work in the first part of this paper with a time-space anti-
symmetric double well potential switching discontinuously between two states.
In the second part we will essentially extend this framework to include con-
tinuously varying potentials. In the strip (x, t) ∈ R× [0, 1) it is defined by the
formula

U(x, t) =

{
U1(x), t ∈ [0, 1

2 ),

U2(x) = U1(−x), t ∈ [ 12 , 1).
(5)

It is periodically extended for all times t by the relation U(·, t) = U(·, t+ 1),
see Fig. 3. We assume that the potential has two local minima at ±1 and
a local maximum at 0, that U1(−1) = −V

2 , U1(1) = − v
2 , 2

3 < v
V < 1, and



Two Mathematical Approaches to Stochastic Resonance 5

U1

1−1

U2

1−1

V/2v/2

x x

Fig. 3. Time-periodic potential U .

U1(0) = 0. We also suppose that the extrema of U are not degenerate, i.e. the
curvatures at these points do not vanish.

A trajectory of a Brownian particle in this potential is described by the
solution of the stochastic differential equation (6).

dXε,T
t = −U ′(Xε,T

t ,
t

T
) dt+

√
ε dWt, Xε,T

0 = x ∈ R. (6)

We aim at finding a resonance intensity ε(T ) for large T which maximizes
the SPA coefficient given by (4). The key to the solution of this problem lies in

determining the time-dependent invariant density µ of (Xε,T
Tt )t≥0. From now

on we follow [Pav02] and [IP02]. Although the diffusion is not time homoge-
neous, by enlarging its state space we can consider a two-dimensional time
homogeneous Markov process (Xε,T

Tt , t (mod 1)) which possesses an invariant
law in the usual sense. By definition we identify the time-dependent equilib-
rium density µ of (Xε,T

Tt )t≥0 with the invariant density of the two-dimensional
process. Indeed, with respect to µ and for fixed t, the law of the real ran-
dom variable Xε,T

Tt has the density µ(·, t (mod 1)). The invariant density µ
is a positive solution of the forward Kolmogorov (Fokker–Planck) equation
A∗
ε,Tµ = 0, where

A∗
ε,T · = − 1

T

∂

∂t
· +ε

2

∂2

∂x2
· + ∂

∂x

(
· ∂
∂x
U

)

is the formal adjoint of the infinitesimal generator of the two-dimensional
diffusion. Moreover, from the time periodicity and time-space antisymmetry
of the potential U defined by (5) one concludes that µ(x, t) = µ(−x, t + 1

2 )
and µ(x, t) = µ(x, t+ 1), (x, t) ∈ R × R+.

This results in the following boundary-value problem used to determine
µ. It is enough to solve the Fokker–Planck equation A∗

ε,Tµ = 0 in the strip

(x, t) ∈ R × [0, 1
2 ] with boundary condition µ(x, 0) = µ(−x, 1

2 ), x ∈ R.

2.1 The spectral gap and the first eigenfunction

We have assumed in (5) that the time dependent potential U is a step function
of the time variable. In the region (x, t) ∈ R × (0, 1

2 ) it is identical to a
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time independent double well potential U1, and therefore the Fokker–Planck
equation turns into a one-dimensional parabolic PDE

1

T

∂

∂t
µ(x, t) =

ε

2

∂2

∂x2
µ(x, t) +

∂

∂x

(
µ(x, t)

∂

∂x
U1(x)

)
. (7)

Let L∗
ε denote the second order differential operator appearing on the right

hand side of (7).
To determine µ we shall use the Fourier method of separation of variables

which consists in expanding the solution of (7) into a Fourier series with re-
spect to the system of eigenfunctions of the operator L∗

ε . It turns out that
under the condition that U1 is smooth and increases at least super-linearly

at ±∞, the operator L∗
ε is essentially self-adjoint in L2(R, e

2U1
ε dx), its spec-

trum is discrete and non-positive, and the corresponding eigenspaces are one-
dimensional. Denoting by ‖ · ‖ and 〈·, ·〉 the norm and the inner product in

L2(R, e
2U1

ε dx) we consider the following formal Floquet type expansion

µ(x, t) =

∞∑

k=0

ak
Ψk(x)

‖Ψk‖
e−Tλkt, (x, t) ∈ R × [0, 1

2 ], (8)

where {−λk, Ψk

‖Ψk‖
}k≥0 is the orthonormal basis corresponding to the spectral

decomposition of L∗
ε, where λ0 < λ1 < λ2 < · · · , and the Fourier coefficients

ak are obtained from the boundary condition µ(x, 0) = µ(−x, 1
2 ), x ∈ R.

Here is the key observation opening the route towards finding local maxima
of the SPA coefficient. The terms in the sum (8) decay in time exponentially
fast with rates λk, and therefore the terms corresponding to larger eigenvalues
contribute less than the ones belonging to the low lying eigenvalues. This
underlines their key importance. Fortunately, in the case of a double well
potential the following theorem holds.

Theorem 1 (‘spectral gap’). In the limit of small noise, the following
asymptotic properties are valid:

λ0 = λ0(ε) = 0, and Ψ0 = e−
2U1

ε ,

λ1 = λ1(ε) =
1

2π

√
U ′′

1 (1)|U ′′
1 (0)| · e−v/ε(1 + O(ε)),

λ2 = λ2(ε) ≥ C > 0 uniformly in ε.

Moreover, we can provide a very good approximation to the first eigen-
function Ψ1. Let −1 < x− < 0 < x+ < 1 such that U1(x−) = −V

3 and

U1(x+) = − v
3 . Fix also some v′ such that 2

3 < v′

v < 1. Then the following
holds.

Theorem 2. In the limit of small noise, the first eigenfinction of L∗
ε is found

as Ψ1 = Φ1e
−

2U1
ε , where
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max
x≤x−

|Φ1 − a(ε)| ≤ e−
2V
3ε ,

max
x−≤x≤x+

|Φ1 − a(ε) − (1 − a(ε))

∫ x
−1
e

2U(y)
ε dy

∫ 1

−1 e
2U(y)

ε dy
| ≤ e−

v′

ε ,

max
x≥x+

|Φ1 − 1| ≤ e−
2v
3ε

with a(ε) = −
√

U ′′

1 (−1)
U ′′

1 (1) e
−V −v

ε (1 + O(ε)).

The result of Theorem 1 plays a crucial role in our analysis. There is a
spectral gap between the first eigenvalue and the rest of the spectrum. Conse-
quently, only the first two terms of (8) can have an essential contribution to
the SPA coefficient ηX .

2.2 Asymptotics of the SPA coefficient

The following theorem gives the asymptotics of the first two Fourier coeffi-
cients a0 and a1 in the Floquet type expansion of the previous subsection.

Theorem 3. We have

a0 = ‖Ψ0‖,

a1 =
‖Ψ1‖
‖Ψ0‖2

· 〈Ψ0(−·), Ψ1〉
‖Ψ1‖2 − e−

1
2Tλ1〈Ψ1(−·), Ψ1〉

+ r,

where r vanishes in the limit of small noise and for T ≥ exp {(v + δ)/ε}, δ
being positive and sufficiently small.

Recall the definition (4) of the SPA coefficient. Denote

SX(ε, T ) =

∫ 1
2

0

EµX
ε,T
Ts · e2πis ds.

In these terms we identify ηX = 4|SX |2.
Theorem 4. Let T ≥ exp {(v + δ)/ε} for δ positive and sufficiently small.
Then the following expansion for SX holds in the small noise limit ε→ 0

SX =
1

πi
b0 +

1

πi− 1
2λ1T

b1 + r1

where the rest term r1 tends to zero with ε and the coefficients are given by

b0 =

∫
y e−

2U1(y)
ε dy

∫
e−

2U1(y)
ε dy

,

b1 = −1 + e−
1
2Tλ1

2
·
∫
y Ψ1(y) dy

∫
e−

2U1(y)
ε dy

· 〈Ψ0(−·), Ψ1〉
‖Ψ1‖2 − e−

1
2Tλ1〈Ψ1(−·), Ψ1〉

.
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Finally,

ηX = b20
4

π2

(λ1T )2

4π2 + (λ1T )2
+R, (9)

where R tends to zero with ε.

Let us now study the resonance behaviour of the SPA coefficient ηX , i.e.
investigate whether it has a local maximum in ε. We formulate the following
Lemma which is obtained by application of Laplace’s method of asymptotic
expansion of singular integrals, see [Erd56, Olv74] or also [Pav02, IP02].

Lemma 1 (‘Laplace’s method’). In the small noise limit, the following
holds true:

b0 = −1 − 1

4

U
(3)
1 (−1)

U ′′
1 (−1)2

ε+ O(ε2),

b1 = −1 + O(ε),

and consequently

b20 = 1 +
1

2

U
(3)
1 (−1)

U ′′
1 (−1)2

ε+ O(ε2), (10)

(b0 − b1)
2 = O(ε2).

The following Theorem exhibits the defect of the notion of spectral power
amplification for our diffusions in periodically and discontinuously switching
potential states.

Theorem 5. Let us fix δ positive and sufficiently small and ∆ > v + δ. Let
also U1(x) − 2U1(−x) < v + V for all x ∈ R (no strong asymmetry!). Then
for T → ∞ and ε satisfying

v + δ

lnT
≤ ε ≤ ∆

lnT

the following asymptotic expansion for the SPA coefficient holds:

ηX (ε, T ) =
4

π2

(
1 +

1

2

U
(3)
1 (−1)

U ′′
1 (−1)2

ε

)
+ O

(
1

ln2 T

)
.

This result has the following surprising consequences.

Corollary 1. For T → ∞ and ε ∈ [ v+δlnT ,
∆

lnT ] the SPA coefficient is a de-

creasing function of ε if U
(3)
1 (−1) < 0 and an increasing function of ε if

U
(3)
1 (−1) > 0.
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Thus, the SPA coefficient as quality measure for tuning shows no resonance
in a domain above Freidlin’s threshold for quasi-deterministic periodicity (see
[Fre00]). This contradicts the physical intuition for the ‘effective dynamics’.
The reason for this surprising phenomenon can only be hidden in the intra-
well behaviour of the diffusion neglected when passing to the reduced Markov
chain. We return to this question later. Let us next study in more detail the
‘effective dynamics’ of the diffusion (6).

2.3 The ‘effective dynamics’: two-state Markov chain

The idea of approximation of diffusions in potential landscapes by appropriate
finite state Markov chains in the context of stochastic resonance was suggested
by Eckmann and Thomas [ET82], and C. Nicolis [Nic82], and developed by
McNamara and Wiesenfeld [MW89]. In this section we follow [Pav02, IP02].
The discrete time case was studied in [IP01].

In order to catch the main features of the spatial inter-well transitions
of the diffusion (6) we consider the time inhomogeneous Markov chain Y ε,T

living on the diffusion’s meta-stable states ±1. The infinitesimal generator of
Y ε,T is periodic in time and is given by

Qε,T (t) =





(
−ϕ ϕ

ψ −ψ

)
, t

T (mod 1) ∈ [0, 1
2 ),

(
−ψ ψ

ϕ −ϕ

)
, t

T (mod 1) ∈ [ 12 , 1).

(11)

The transition rates ϕ and ψ which are responsible for the similarity of the
two processes are chosen to be exponentially small in ε:

ϕ =
1

2π

√
U ′′

1 (−1)|U ′′
1 (0)| · e−V/ε and ψ =

1

2π

√
U ′′

1 (1)|U ′′
1 (0)| · e−v/ε.

To exponential order they correspond (as they should) to the inverses of the

Kramers-Eyring transition times. The invariant measure of Y ε,T
Tt can be ob-

tained as a solution of a forward Kolmogorov equation and is given by

ν−(t) =
ψ

ϕ+ ψ
+
ϕ− ψ

ϕ+ ψ

e−(ϕ+ψ)Tt

1 + e−
1
2 (ϕ+ψ)Tt

,

ν+(t) =
ϕ

ϕ+ ψ
− ϕ− ψ

ϕ+ ψ

e−(ϕ+ψ)Tt

1 + e−
1
2 (ϕ+ψ)Tt

, t ∈ [0, 1
2 ],

(12)

and ν±(t) = ν∓(t+ 1
2 ) for t ≥ 0.

We define the SPA coefficient ηY for the Markov chain Y ε,T analogously
to (4). In this much simpler setting given it can be described explicitly.

Theorem 6. For all ε > 0 and T > 0 the following holds:

ηY (ε, T ) =
4

π2

T 2(ϕ− ψ)2

4π2 + T 2(ϕ+ ψ)2
. (13)
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Fig. 4. SPA coefficient ηY of the two-state Markov chain.

Compare (13) with (9). Since (ϕ ± ψ)2 ≈ λ2
1 in the limit of small ε, the

formulae for ηX and ηY differ only in the ‘geometric’ pre-factor b20 and the
asymptotically negligible remainder term R.

The explicit formula (13) allows to study the local maxima of ηY as a
function of noise intensity for large periods T in great detail (see Fig. 4).

Theorem 7. In the limit T → ∞ the function ε 7→ ηY (ε, T ) has a local
maximum at

ε(T ) ≈ v + V

2

1

lnT
,

or in the limit ε→ 0 in terms of T

T (ε) ≈ π√
2pq

√
v

V − v
e

V +v
ε .

The ‘resonance’ behaviours of ηX and ηY are quite different. Whereas
the diffusion’s SPA has no extremum for small ε, the Markov chain’s always
has. What can be responsible for this discrepancy? Note that the Markov
chain mimics only the inter-well dynamics of the diffusion. Thus, the SPA
coefficient ηY measures only the spectral energy contributed by inter-well
jumps. On the other hand, ηX also counts the numerous intra-well fluctuations
of the diffusion the weight of which evidently becomes overwhelming in the
small noise limit. These fluctuations have small energy. But since the diffusion
spends most of its time near ±1 the local asymmetries of the potential at these
points dominate the picture and destroy optimal tuning.

To underpin this heuristics mathematically, let us now make the idea of
neglecting the diffusion’s intra-well fluctuations precise. For example, we cut
off those among them which have not enough energy to reach half the height
of the potential barrier between the wells. Consider the cut-off function g
defined by
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g(x) =





−1, x ∈ [x1, x2],

1, x ∈ [y1, y2],

x, otherwise,

where x1 < −1 < x2 < 0 and 0 < y1 < 1 < y2 are such that U1(x1) =
U1(x2) = −V

4 and U1(y1) = U1(y2) = − v
4 , see Fig. 5. Now we study the

−1 1 x

g(x)

−1

1

x1 x2 y1 y2

Fig. 5. Function g designed to cut off diffusion’s intrawell dynamics.

modified SPA coefficient of a diffusion defined by

η̃X(ε, T ) =

∣∣∣∣
∫ 1

0

Eµ

[
g(Xε,T

Ts )
]
e2πis ds

∣∣∣∣
2

.

Following the steps of Subsection 2.2 we obtain a formula for η̃X which is
quite similar to (9) and (13):

η̃X (ε, T ) = b̃20
4

π2

(λ1T )2

4π2 + (λ1T )2
+ R̃,

where R̃ is a small remainder term, and

b̃20 =

(∫
g(y)e−

2U1(y)
ε dy

∫
e−

2U1(y)
ε dy

)2

= 1 − 4

√
U ′′

1 (−1)

U ′′
1 (1)

e−
V −v

ε (1 + O(ε))

(compare to (10)).

The modified geometric pre-factor b̃20 is essentially smaller than its coun-
terpart b20. This has crucial influence on the SPA coefficient η̃X : in the limit
of large period and small noise its behaviour now reminds of ηY .

Theorem 8. Let the assumptions of Theorem 5 hold. Then for any γ > 1 in
the limit T → ∞ the function ε 7→ η̃X(ε, T ) has a local maximum on

[
1

γ

v + V

2

1

lnT
, γ
v + V

2

1

lnT

]
.
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In other words, the optimal tuning for the measure of goodness η̃X exists and
is given approximately by

ε(T ) ≈ v + V

2

1

lnT
.

3 Smooth periodic potentials and a robust resonance

notion

The serious defect of the SPA coefficient in the prediction of the stochastic
resonance point in the Markov chain models containing the effective dynamics
of complex diffusion models motivates us to look for robust notions of quality
of periodic tuning. Since the dynamics of the Markov chain only retains the
rough mechanism of transitions between the domains of attraction given in the
underlying potential landscape, such a notion should only take into account
the most important aspects of the attractor hopping. Also, as the alternative
notions discussed in the preceding section show, the resonance point is by no
means a canonical object, independent of the way tuning quality is measured.
We think that the methods of advanced large deviations’ theory behind the
notion to be explained in this section will give it a more natural place, and
possibly qualify it as canonical.

At the same time, we essentially generalize the simplified model of time
periodic potential considered in the previous section, and lift the study of
stochastic resonance to a somewhat more abstract level. The potential func-
tion U in the present section will still be supposed to be one-dimensional in
space. But its periodic time variation will just be assumed to be continu-
ous, and otherwise quite general. More precisely, we study diffusion processes
driven by a Brownian motion of intensity ε given by the stochastic differential
equation

dXε,T
t = −U ′(Xε,T

t ,
t

T
) dt+

√
ε dWt, t ≥ 0.

The underlying potential landscape (see Fig. 6) is described by a function
U(x, t), x ∈ R, t ≥ 0, which is periodic in time with period 1, and its temporal
variation, by the rescaling with very large T , acts on the diffusion at a very
small frequency. U is supposed to have exactly two wells located at ±1, sep-
arated by a saddle at 0. The depth of U(·, t) at ±1 is given by the 1-periodic
depth functions 1

2D±1(t) which are assumed to never fall below zero. Let us
now look at exponential time scales ρ, related to the natural time scale T by
T = eρ/ε. In this setting, Freidlin’s theory of quasi-deterministic motion indi-
cates that transitions e.g. from the domain of attraction of −1 to the domain
of attraction of 1 will occur as soon as D−1 gets less than ρ, i.e. at time

a±1
ρ = inf{t ≥ 0 : D±1(t) ≤ ρ}.

This triggers periodic behaviour of the diffusion trajectories on long time
scales. The modern theory of meta-stability in time homogeneous diffusion
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Fig. 6. Potential landscape U .

processes produces the exponential decay rates of transition probabilities be-
tween different domains of attraction of a potential landscape together with
very sharp multiplicative error estimates, uniformly on compacts in system
parameters. Their sharpest forms are presented in some very recent papers by
Bovier et al. [BEGK02, BGK02]. We use this powerful machinery in order to
obtain very precise estimates of the exponential tails of the laws of the transi-
tion times between domains of attraction. To this end, we have to extend the
estimates by Bovier et al. [BGK02] to the framework of time inhomogeneous
diffusions. In the underlying one-dimensional situation, this can be realized
by freezing the time dependence of the potential on small time intervals to
define lower and upper bound time homogeneous potentials not differing very
much from the original one. Comparison theorems are used to control the
transition behaviour from above and below through the corresponding time
homogeneous diffusions. This allows very precise estimates on the probabili-
ties with which the diffusion at time scale T = eρ/ε transits from the domain
of attraction of −1 to the domain of attraction of 1 or vice versa within time
windows [(a−1

ρ − h)T, (a−1
ρ + h)T ] for small h > 0. If τx(X

ε,T ) denotes the
transit time to x, it is given by

lim
ε→0

ε ln (1 −M(ε, ρ)) = max
i=±1

{
ρ−Di(a

i
ρ − h)

}
,

with

M(ε, ρ) = min
i=±1

Pi(τ−i(X
ε,T ) ∈ [(aiρ − h)T, (aiρ + h)T ]), ε > 0, ρ ∈ IR,

and where IR is the resonance interval, i.e. the set of scale parameters for
which trivial or chaotic transition behaviour of the trajectories is excluded.
The stated convergence is uniform in ρ on compact subsets of IR. This allows
us to take M(ε, ρ) as our measure of periodic tuning, compute the scale ρ0(h)
for which the transition rate is optimal, and define the stochastic resonance
point as the eventually existing limit of ρ0(h) as h→ 0. This resonance notion
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has the big advantage of being robust for the passage from the diffusion to
the two state Markov chain describing the effective dynamics.

3.1 Transition times for the Markov chain

Let us first discuss the effective dynamics modelled by a continuous time two
state Markov chain. The states represent the positions of the bottoms of the
wells of the double well potential. The transition rates picture the transition
mechanism of the diffusion to which we return later. We shall first define the
interval of time scales for which transitions are not trivial.

Definition of the resonance interval

Let us consider the time continuous Markov chain Y ε,T = (Y ε,Tt )t≥0 taking

values in the state space {−1, 1} with initial data Y ε,T
0 = −1. Suppose that

the infinitesimal generator is given by

Gε,T (t) =

(
−ϕ( tT ) ϕ( tT )
ψ( tT ) −ψ( tT )

)
,

where T is an exponentially large time scale (we recall that T = eρ/ε, ρ > 0),
ψ and ϕ are 1-periodic functions describing a rate which just produces the
transition dynamics of the diffusion between the potential minima ±1. Let us
recall that, if we consider some time-independent potential U , then the mean
transition time between the wells is given by the Kramers-Eyring law. If the
diffusion starts in the minimum of one well, the mean exit time is equivalent
to eV/ε, where V

2 is the height of the barrier separating the two minima of the

potential. Consequently the transition rate should be proportional to e−V/ε.
In the framework we now consider the depth of the wells depends continu-

ously on time. In this situation it is natural to postulate the following periodic
infinitesimal probabilities

ϕ(t) = e−D−1(t)/ε, t ≥ 0. (14)

Let us assume that D1(t) = D−1(t+α), t ≥ 0, with phase shift α ∈ (0, 1) and

- all local extrema of D±1(·) are global;
- the functions D±1(·) are strictly monotonous between the extrema.

Hence ψ(t) = ϕ(t+ α), t ≥ 0, and

ψ(t) = e−D1(t)/ε, t ≥ 0. (15)

Let us define S−1 to be the normalized time of the first jump from the state
−1 to 1, i.e. S−1 = inf{t ≥ 0 : Y ε,TtT = 1} Analogously, S1 will be the time
of first jump from state 1 to −1, starting with Y0 = 1. We are especially
interested in the behaviour of S as T becomes very large, that is as ε→ 0. In
fact we get the following dichotomy of possible behaviour:
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• If ρ > inft≥0D−1(t), the law of S−1 tends to the Dirac measure in the
point a−1

ρ given by

a±1
ρ = inf{t ≥ 0 : D±1(t) ≤ ρ}. (16)

• If ρ ≤ inft≥0D−1(t), then the probability measure of S−1 tends weakly to
the null measure.

It suffices to replace D−1 by D1 and a−1
ρ by a1

ρ to obtain similar results for
S1.

This leads to the following interpretation:
If ρ ≥ D−1(0), that is, if the time scale T is very large, then on this expo-

nential scale, the asymptotic behaviour of the Markov chain is characterized
by an instantaneous jump, i.e. a−1

ρ = 0. This just means that a clock ticking
in units of T will record a jump of the process as instantaneous, since it occurs
on a smaller scale.

In case ρ < inft≥0D−1(t), the time scale T is too small compared to the
transition rates. Consequently no transitions will be observed, and the process
never jumps on this scale.

In the last case D−1(0) > ρ > inft≥0D−1(t). So the infinitesimal probabil-
ity at time 0 is too small to allow any transition, and the Markov chain will
have to wait until this probability is large enough to allow for jumps, that is
approximatively aρT . This case is the only interesting case, in the sense that
the chain stays for some time in the starting state before it jumps to the other
one.

To observe stochastic resonance we obviously need to study both transi-
tions from −1 to 1 and vice versa. So we define some interval IR called interval
of resonance (see Fig. 7) which is to contain those exponential scales in which
the process on the one hand asymptotically cannot always stay in the same
state with positive probability, and on the other hand asymptotically cannot
jump instantaneously from one state to the other.

D−1(t)

IR

t

D1(t)

Fig. 7. Resonance interval IR:
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IR = (max
i=±1

inf
t≥0

Di(t), inf
t≥0

max
i=±1

Di(t)).

Optimal tuning for the Markov chain

Let us now assume that we are in the range of non-trivial jumping, that is
ρ ∈ IR. We next determine an optimal tuning rate or stochastic resonance
point. It will be based on the density of the first jump, in particular the
intensity of its peak, which we propose as a new measure of quality of tuning.
For h > 0 we shall compare the probabilities with which the first transition
takes place within the window of exponential length [(aiρ − h)T, (aiρ + h)T ],
i = ±1, for different ρ, maximize this quantity in ρ and finally take the window
length to 0. More formally, for h > 0 small enough define

N(ε, ρ) = min
i=±1

Pi(Si ∈ [(aiρ − h)T, (aiρ + h)T ]), ε > 0, ρ ∈ IR, (17)

and call it transition probability for a time window of width h for the Markov
chain. The optimal parameter ρ0 will tell us at which time scale it is most
likely to see trajectories of the chain with first jump in the corresponding
window, and further jumps in accordingly displaced windows. In particular,
it will tell us at which scale periodic trajectories of just this period are most
probable. Since the probability density of the first transition times from one
state to the other is well known, for example the density of S−1 equals

p(t) = ϕ(t)e−
R

t

0
ϕ(s)ds,

we can compute an explicit expression for N(ε, ρ). The optimal time scale
will be determined by a combination of a large deviations result concerning
the first jump of the Markov chain parametrized by the logarithmic scale ρ of
time, and a maximization problem for the large deviation rates in ρ to which
the transition probabilities converge uniformly.

Using Laplace’s method to estimate the singular integrals appearing as
ε→ 0, we obtain the required asymptotic result.

Theorem 9. Let Γ be a compact subset of IR, h0 < max{a−1
ρ , T2 −a−1

ρ }. Then
for 0 < h ≤ h0

lim
ε→0

ε ln(1 −N(ε, ρ)) = max
i=±1

{
ρ−Di(a

i
ρ − h)

}
(18)

uniformly for ρ ∈ Γ .

Since the convergence is uniform in ρ, it suffices to minimize the left hand side
of (18) to obtain an optimal tuning point. For h small the eventually existing
global minimizer ρR(h) of

IR 3 ρ 7→ max
i=±1

{
ρ−Di(a

i
λ − h)

}

is a good candidate for our resonance point. But it still depends on h. To get
rid of this dependence, we shall consider the limit of λR(h) as h→ 0.
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Definition 1. Suppose that

IR 3 ρ 7→ max
i=±1

{
ρ−Di(a

i
ρ − h)

}

possesses a global minimum ρR(h). Suppose further that

ρR = lim
h→0

ρR(h)

exists in IR. We call ρR the stochastic resonance point of the Markov chain
Y ε,T with time periodic infinitesimal generator Gε,T .

In fact the stochastic resonance point exists if one of the depth functions, and
therefore both, due to the phase lag, has a unique point of maximal decrease
in the interval in which it is strictly decreasing.

Example: In fact all the results presented before, in the case of a time
dependent potential U with meta-stable states at ±1 also hold true if the
meta-stable states are allowed to move periodically but stay away from the
saddle 0. Then the state −1 of the Markov chain represents the left meta-
stable state and 1 represents the right one. We shall mention one classical
example in stochastic resonance (see, for instance [GHJM98]) which is the
over-damped motion of a Brownian particle in the potential

2U(x, t) = V (x) +Ax cos(2πt),

where V denotes a reflection-symmetric potential with two wells located at
±1. In this particular case, for 0 < A < V (0) − V (−1),

D±1(t) = V (0) − V (−1) ±A cos(2πt).

Hence the phase lag α is equal to π and the resonance interval is

IR = (V (0) − V (−1) −A, V (0) − V (−1)).

Let h > 0 small enough, then the logarithmic time scale which asymptotically
optimizes the quality measure N(ε, ρ) is given by

ρR(h) = V (0) − V (−1) −A sin(πh).

In order to obtain the resonance point, we just let h tend to zero, to obtain
ρR = limh→0 ρR(h) = V (0) − V (−1), that is the average depth of the time
periodic potential U . In this particular case, it is obvious that the resonance
point coincides with the point of maximal decrease of the depth functions D−1

and D1. This example is treated in detail in [HI02].

3.2 Transition times for the diffusion and robustness

As seen in the preceding subsection, for the effective dynamics we obtain both
simple and explicit results. Now we shall show how our measure of quality
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based purely on the jumps for the two-state Markov chain can be extended to
the diffusion case. We just have to generalize the notion of jumps to the tran-
sition times between the two domains of attraction of the potential landscape,
i.e. the two wells. The accordingly generalized measure of quality of periodic
tuning possesses the desired property of being robust. The analogous notion
of interval of resonance will then be presented in the following subsection. In
our presentation we follow [HI].

Resonance interval for diffusions

Recall that the underlying potential is described by a function U(x, t), x ∈ R,
t ≥ 0, such that U ′(·, ·) is both continuous in time and space. The local minima
are located at ±1 and the saddle point at 0, independently of time. Our main
concern will be the asymptotics of the transition times from the domain of
attraction (−∞, 0) of −1 to the domain of attraction (0,∞) associated with 1
of the time inhomogeneous diffusion in the small noise limit ε→ 0. More pre-
cisely we will be interested in describing the exponential transition rate from
the domain of attraction of −1 to the domain of attraction of 1. Our poten-
tial not being time homogeneous, we shall make use of comparison arguments
with diffusions possessing time independent potentials in order to perform a
careful reduction of the inhomogeneous exit problem to the homogeneous one,
and use the asymptotic results well known for this particular case. This will
be achieved by freezing the driving force derived from the potential on small
time intervals on the minimal or maximal level it takes there. To be more
precise, for each interval I ⊂ R+ let

RI

∂U
∂x (·, t) for

some t in I

VI

x

0−1 1

Fig. 8. Definition of VI and RI .

VI (x) = sup
t∈I

∂U

∂x
(t, x) and RI(x) = inf

t∈I

∂U

∂x
(t, x). (19)
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The regularity conditions valid for U imply that V and R are continuous
functions. Moreover VI (−1) = RI(−1) = 0, see Fig. 8. If I = [a, b], we denote

by X
ε,I

the solution of the SDE on R+

{
dX

ε,I

t = −RI(X
ε,I

t ) dt+
√
ε dWt,

X
ε,I

0 = Xε,T
aT .

(20)

Xε,I is defined in the same way replacing RI by VI . These two time homo-
geneous diffusions are used to control the time inhomogeneous diffusion Xε,T

as long as time runs in the interval I . In fact, we have P -a.s.

Xε,I
tT ≤ Xε,T

(t+a)T ≤ X
ε,I

tT , t ∈ [0, b− a].

Hence in order to study the time the diffusion needs to reach 1 starting in the
left well, we shall consider the diffusion on one period. This time interval can
be decomposed into finitely many small time intervals In, 0 ≤ n ≤ n0. We
shall then freeze the potential on In and analyze if the the diffusions Xε,In

and X
ε,In

have enough time in In to reach the top of the barrier between the
two wells and, consequently on the same scale reach 1, the bottom of the right
well. In other words we need to get information on the exit problem for the

homogeneous diffusions Xε,I and X
ε,I

.
We shall refer to the most recent and advanced development of sharp esti-

mates for transition times presented in Bovier et al. [BEGK02] and [BGK02].
They are valid far beyond our modest framework, and we just present the
results we will use here. For this purpose, suppose that U1(·) is a purely space
dependent C2 potential function of the shape similar to those on Fig. 3. It
possesses only ±1 as local minima, separated by the saddle 0. Suppose that
the curvature of U1 at −1 is strictly positive, i.e. U ′′

1 (−1) > 0. As for ultra-
or hypercontractivity type properties for U1, we shall assume that it has ex-
ponentially tight level sets, i.e. there is M0 > 0 such that for any M ≥ M0

there exists a constant C(M) such that for ε ≤ 1
∫

{y:U1(z)≥M}

e−2U1(z)/ε dz < C(M)e−M/ε. (21)

We shall concentrate in this situation on an exit of the domain of attraction
of the meta-stable point −1 for the diffusion associated with the SDE

{
dXε

t = −U ′
1(X

ε
t ) dt+

√
ε dWt,

Xε
0 = x < 0.

We are interested in the asymptotics of the first time Xε reaches 1:

τ1(X
ε) = inf{t > 0 : Xε

t = 1}.

Then we obtain the following result.
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Theorem 10. Let λ(ε) denote the principal eigenvalue of the linear operator

Lεu =
ε

2
u′′ − U ′

1u
′, u ∈ L2((−∞, 1], e−2U1/εdx)

with Dirichlet boundary conditions at 1. Then for every compact K ⊆ (−∞, 0)
there is a constant c > 0 such that

Px(τ1(X
ε) > t) = e−λ(ε)t(1 + OK(e−c/ε)), (22)

where OK denotes an error term which is uniform in x ∈ K, t ≥ 0. Moreover,
for the asymptotic behaviour of the eigenvalue λ(ε) the following holds

λ(ε)Ex[τ1(X
ε)] → 1 uniformly on compacts K ⊆ (−∞, 0) as ε→ 0. (23)

Large deviations’ theory reveals the asymptotic behaviour of the principal
eigenvalue:

lim
ε→0

ε lnλ(ε) = −2(U1(0) − U1(−1)).

This allows us to deduce that the mean hitting time Ex[τ1(X
ε)] is equivalent to

e
2
ε
(U1(0)−U1(−1)) as ε→ 0. Here U1(0)−U1(−1) is the depth of the starting well.

Moreover, by Theorem 10, the normalized hitting time τ1(X
ε)

Ex[τ1(Xε)] converges

in law to an exponential random variable with mean 1 as ε→ 0.
These results are very precise. They describe the asymptotic time of the

barrier crossing and at the same time give an estimation of the probability to
cross the barrier in a small time window around this asymptotic deterministic
time. We can apply them to the ‘frozen’ potential U(·, ·) on the small time
intervals In. We thereby assume for simplicity that the frozen potentials are
regular of order C2. Let us choose n ≥ 0 and set In = [rn, rn+1]. We assume
that Xε,T has not reached the top of the barrier before rnT and study what
happens during the time interval [rnT, rn+1T ]. We have already seen that

Xε,T is controlled by both Xε,In and X
ε,In

. On the one hand, it suffices to
prove that Xε,In reaches 1 before rn+1T in order to get τ1(X

ε,T ) ≤ rn+1T .

On the other hand, if we get that X
ε,In

does not hit 1 then so does Xε,T .
As ε → 0, Theorem 10 tells us, for example, that the probability that Xε,In

reaches 1 before rn+1T is close to 1 if the depth of the left well is smaller than
limε→0 ε ln(rn+1 − rn)T = ρ. Indeed we get limε→0(rn+1 − rn)λ(ε)T = +∞
which implies by (22) that

lim
ε→0

Px(τ1(X
ε,In) > (rn+1 − rn)T ) = 0.

The statements depend weakly on the depth of the well of the potential as-

sociated with Xε,In and X
ε,In

. Since ∂U
∂x is continuous both in x and t, if we

choose the length of all intervals In small enough then the well depth func-
tions associated with the two time homogeneous diffusions are equivalent to
D−1(rn), the depth of the left well of the landscape U . Hence the diffusion
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Xε,T
tT reaches 1 asymptotically as soon as the depth D−1(t) goes below the

level ρ. This means

lim
ε→0

τ1(X
ε,T )

T
= a−1

ρ ,

where a−1
ρ was defined in (16).

Knowing the asymptotics of the time at which the diffusion reaches the
barrier separating the two wells in order to hit 1 puts us again in a position
in which we can discuss a resonance interval as for the reduced model. We
obtain the same interval

IR = (max
i=±1

inf
t≥0

Di(t), inf
t≥0

max
i=±1

Di(t)).

Optimal tuning for the diffusion and robustness

The comparison between time inhomogeneous and homogeneous potentials
and the asymptotic result 10 enable us to proceed to the completion of our
approach of stochastic resonance for diffusions. We have very precise estimates
on the probabilities with which the diffusion at time scale T = eρ/ε transits
from the domain of attraction of −1 to the domain of attraction of 1 and vice
versa within the time windows [(aiρ−h)T, (aiρ+h)T ] for small h > 0. On their
basis we may define a measure of quality of tuning for the diffusion which
corresponds to (17):

M(ε, ρ) = min
i=±1

Pi(τ−i(X
ε,T ) ∈ [(aiρ − h)T, (aiρ + h)T ]), ε > 0, ρ ∈ IR. (24)

We may now state our main result on uniform transition rates.

Theorem 11. Let Γ be a compact subset of IR, h0 > 0 small enough. Then

lim
ε→0

ε ln(1 −M(ε, ρ)) = max
i=±1

{
ρ−Di(a

i
ρ − h)

}
(25)

uniformly for ρ ∈ Γ .

The stated convergence is uniform in ρ on compact subsets of IR. This
allows us to take M(ε, ρ) as our measure of periodic tuning, compute the
scale ρ0(h) for which the transition rate is optimal, and define the stochastic
resonance point as the eventually existing limit of ρ0(h) as h→ 0. This notion
of quality has the big advantage of being robust for the passage from the two
state Markov chain to the diffusion. So the following final robustness result
holds true.

Theorem 12. The resonance points of the diffusion Xε,T with periodic poten-
tial U and of the Markov chain Y ε,T with exponential transition rate functions
D±1 coincide.



22 S. Herrmann, P. Imkeller, and I. Pavlyukevich

References

[ANMS99] V. S. Anishchenko, A. B. Neiman, F. Moss, and L. Schimansky-Geier.
Stochastic resonance: noise-enhanced order. Physics–Uspekhi, 42(1):7–36,
1999.

[BEGK02] A. Bovier, M. Eckhoff, V. Gayrard, and M. Klein. Metastability in
reversible diffusion processes I. Sharp asymptotics for capacities and exit
times. Preprint No. 767, Weierstraß-Institut für angewandte Analysis
und Stochastik (WIAS), Berlin, 2002. To appear in J. Eur. Math. Soc.

[BGK02] A. Bovier, V. Gayrard, and M. Klein. Metastability in reversible diffu-
sion processes II. Precise asymptotics for small eigenvalues. Preprint
No. 768, Weierstraß-Institut für angewandte Analysis und Stochastik
(WIAS), Berlin, 2002. To appear in J. Eur. Math. Soc.

[BPSV83] R. Benzi, G. Parisi, A. Sutera, and A. Vulpiani. A theory of stochastic
resonance in climatic change. SIAM J. Appl. Math., 43:563–578, 1983.

[DLM+95] M. I. Dykman, D. G. Luchinskii, R. Mannella, P. V. E. McClintock,
N. D. Stein, and N. G. Stocks. Stochastic resonance in perspective. Nuovo
Cimento D, 17:661–683, 1995.
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